bkbit.models.library_generation module
- class bkbit.models.library_generation.Activity(*, id: str, iri: str | None = None, category: List[Literal['https://w3id.org/biolink/vocab/Activity', 'biolink:Activity']] = ['biolink:Activity'], type: List[str] | None = None, name: str | None = None, description: str | None = None, has_attribute: List[str] | None = None, deprecated: bool | None = None, provided_by: List[str] | None = None, xref: List[str] | None = None, full_name: str | None = None, synonym: List[str] | None = None)[source]
Bases:
ActivityAndBehavior
,NamedThing
An activity is something that occurs over a period of time and acts upon or with entities; it may include consuming, processing, transforming, modifying, relocating, using, or generating entities.
Create a new model by parsing and validating input data from keyword arguments.
Raises [ValidationError][pydantic_core.ValidationError] if the input data cannot be validated to form a valid model.
self is explicitly positional-only to allow self as a field name.
- category: List[Literal['https://w3id.org/biolink/vocab/Activity', 'biolink:Activity']]
- deprecated: bool | None
- description: str | None
- full_name: str | None
- has_attribute: List[str] | None
- id: str
- iri: str | None
- linkml_meta: ClassVar[LinkMLMeta] = LinkMLMeta(root={'class_uri': 'biolink:Activity', 'definition_uri': 'https://w3id.org/biolink/vocab/Activity', 'exact_mappings': ['prov:Activity', 'NCIT:C43431', 'STY:T052'], 'from_schema': 'https://w3id.org/biolink/bican-biolink-schema', 'mixins': ['activity and behavior'], 'narrow_mappings': ['STY:T056', 'STY:T057', 'STY:T064', 'STY:T066', 'STY:T062', 'STY:T065', 'STY:T058']})
- model_config: ClassVar[ConfigDict] = {'arbitrary_types_allowed': True, 'extra': 'forbid', 'strict': False, 'use_enum_values': True, 'validate_assignment': True, 'validate_default': True}
Configuration for the model, should be a dictionary conforming to [ConfigDict][pydantic.config.ConfigDict].
- name: str | None
- provided_by: List[str] | None
- synonym: List[str] | None
- type: List[str] | None
- xref: List[str] | None
- class bkbit.models.library_generation.ActivityAndBehavior[source]
Bases:
Occurrent
Activity or behavior of any independent integral living, organization or mechanical actor in the world
Create a new model by parsing and validating input data from keyword arguments.
Raises [ValidationError][pydantic_core.ValidationError] if the input data cannot be validated to form a valid model.
self is explicitly positional-only to allow self as a field name.
- linkml_meta: ClassVar[LinkMLMeta] = LinkMLMeta(root={'class_uri': 'biolink:ActivityAndBehavior', 'definition_uri': 'https://w3id.org/biolink/vocab/ActivityAndBehavior', 'exact_mappings': ['UMLSSG:ACTI'], 'from_schema': 'https://w3id.org/biolink/bican-biolink-schema', 'mixin': True})
- model_config: ClassVar[ConfigDict] = {'arbitrary_types_allowed': True, 'extra': 'forbid', 'strict': False, 'use_enum_values': True, 'validate_assignment': True, 'validate_default': True}
Configuration for the model, should be a dictionary conforming to [ConfigDict][pydantic.config.ConfigDict].
- class bkbit.models.library_generation.AgeAtDeathReferencePoint(value)[source]
Bases:
str
,Enum
An enumeration.
- birth = 'birth'
- conception = 'conception'
- class bkbit.models.library_generation.AgeAtDeathUnit(value)[source]
Bases:
str
,Enum
An enumeration.
- days = 'days'
- months = 'months'
- years = 'years'
- class bkbit.models.library_generation.AmplifiedCdna(*, id: str, iri: str | None = None, category: List[Literal['https://identifiers.org/brain-bican/vocab/AmplifiedCdna', 'bican:AmplifiedCdna']] = ['bican:AmplifiedCdna'], type: List[str] | None = None, name: str | None = None, description: str | None = None, has_attribute: List[str] | None = None, deprecated: bool | None = None, provided_by: List[str] | None = None, xref: List[str] | None = None, full_name: str | None = None, synonym: List[str] | None = None, was_derived_from: str | None = None, was_generated_by: str | None = None, amplified_cDNA_amplified_quantity_ng: float | None = None, amplified_cDNA_RNA_amplification_pass_fail: AmplifiedCdnaRnaAmplificationPassFail | None = None, amplified_cDNA_percent_cDNA_longer_than_400bp: float | None = None)[source]
Bases:
ProvEntity
,MaterialSample
A collection of cDNA molecules derived and amplified from an input barcoded cell sample. These cDNA molecules represent the gene expression of each cell, with all cDNA molecules from a given cell retaining that cell’s unique barcode from the cell barcoding step. This is a necessary step for GEX methods but is not used for ATAC methods.
Create a new model by parsing and validating input data from keyword arguments.
Raises [ValidationError][pydantic_core.ValidationError] if the input data cannot be validated to form a valid model.
self is explicitly positional-only to allow self as a field name.
- amplified_cDNA_RNA_amplification_pass_fail: AmplifiedCdnaRnaAmplificationPassFail | None
- amplified_cDNA_amplified_quantity_ng: float | None
- amplified_cDNA_percent_cDNA_longer_than_400bp: float | None
- category: List[Literal['https://identifiers.org/brain-bican/vocab/AmplifiedCdna', 'bican:AmplifiedCdna']]
- deprecated: bool | None
- description: str | None
- full_name: str | None
- has_attribute: List[str] | None
- id: str
- iri: str | None
- linkml_meta: ClassVar[LinkMLMeta] = LinkMLMeta(root={'exact_mappings': ['NIMP:Amplified%20cDNA'], 'from_schema': 'https://identifiers.org/brain-bican/library-generation-schema', 'in_subset': ['bican', 'library_generation'], 'mixins': ['ProvEntity'], 'slot_usage': {'category': {'name': 'category', 'pattern': '^bican:[A-Z][A-Za-z]+$'}, 'name': {'description': "Name of a collection of cDNA molecules derived and amplified from an input barcoded_cell_sample. These cDNA molecules represent the gene expression of each cell, with all cDNA molecules from a given cell retaining that cell's unique barcode from the cell barcoding step. This is a necessary step for GEX methods but is not used for ATAC methods.", 'exact_mappings': ['NIMP:PD-YAAGGG39'], 'local_names': {'NIMP': {'local_name_source': 'NIMP', 'local_name_value': 'amplified_cdna_local_name'}}, 'name': 'name', 'slot_uri': 'bican:e2606a11-114e-472f-9e05-33f9b6fc3089'}, 'was_derived_from': {'description': 'The input barcoded cell sample from which amplified cDNA was derived from.', 'exact_mappings': ['NIMP:has_parent'], 'name': 'was_derived_from', 'range': 'BarcodedCellSample'}, 'was_generated_by': {'description': 'The cDNA amplification process from which the amplified cDNA was generated by.', 'name': 'was_generated_by', 'range': 'CdnaAmplification'}}})
- model_config: ClassVar[ConfigDict] = {'arbitrary_types_allowed': True, 'extra': 'forbid', 'strict': False, 'use_enum_values': True, 'validate_assignment': True, 'validate_default': True}
Configuration for the model, should be a dictionary conforming to [ConfigDict][pydantic.config.ConfigDict].
- name: str | None
- provided_by: List[str] | None
- synonym: List[str] | None
- type: List[str] | None
- was_derived_from: str | None
- was_generated_by: str | None
- xref: List[str] | None
- class bkbit.models.library_generation.AmplifiedCdnaRnaAmplificationPassFail(value)[source]
Bases:
str
,Enum
An enumeration.
- Fail = 'Fail'
- Low_QC = 'Low QC'
- Not_evaluated = 'Not evaluated'
- Pass = 'Pass'
- class bkbit.models.library_generation.Annotation[source]
Bases:
ConfiguredBaseModel
Biolink Model root class for entity annotations.
Create a new model by parsing and validating input data from keyword arguments.
Raises [ValidationError][pydantic_core.ValidationError] if the input data cannot be validated to form a valid model.
self is explicitly positional-only to allow self as a field name.
- linkml_meta: ClassVar[LinkMLMeta] = LinkMLMeta(root={'abstract': True, 'class_uri': 'biolink:Annotation', 'definition_uri': 'https://w3id.org/biolink/vocab/Annotation', 'from_schema': 'https://w3id.org/biolink/bican-biolink-schema'})
- model_config: ClassVar[ConfigDict] = {'arbitrary_types_allowed': True, 'extra': 'forbid', 'strict': False, 'use_enum_values': True, 'validate_assignment': True, 'validate_default': True}
Configuration for the model, should be a dictionary conforming to [ConfigDict][pydantic.config.ConfigDict].
- class bkbit.models.library_generation.Attribute(*, id: str, iri: str | None = None, category: List[Literal['https://w3id.org/biolink/vocab/Attribute', 'biolink:Attribute']] = ['biolink:Attribute'], type: List[str] | None = None, name: str | None = None, description: str | None = None, has_attribute: List[str] | None = None, deprecated: bool | None = None, provided_by: List[str] | None = None, xref: List[str] | None = None, full_name: str | None = None, synonym: List[str] | None = None, has_attribute_type: str, has_quantitative_value: List[QuantityValue] | None = None, has_qualitative_value: str | None = None)[source]
Bases:
NamedThing
,OntologyClass
A property or characteristic of an entity. For example, an apple may have properties such as color, shape, age, crispiness. An environmental sample may have attributes such as depth, lat, long, material.
Create a new model by parsing and validating input data from keyword arguments.
Raises [ValidationError][pydantic_core.ValidationError] if the input data cannot be validated to form a valid model.
self is explicitly positional-only to allow self as a field name.
- category: List[Literal['https://w3id.org/biolink/vocab/Attribute', 'biolink:Attribute']]
- deprecated: bool | None
- description: str | None
- full_name: str | None
- has_attribute: List[str] | None
- has_attribute_type: str
- has_qualitative_value: str | None
- has_quantitative_value: List[QuantityValue] | None
- id: str
- iri: str | None
- linkml_meta: ClassVar[LinkMLMeta] = LinkMLMeta(root={'class_uri': 'biolink:Attribute', 'definition_uri': 'https://w3id.org/biolink/vocab/Attribute', 'exact_mappings': ['SIO:000614'], 'from_schema': 'https://w3id.org/biolink/bican-biolink-schema', 'id_prefixes': ['EDAM-DATA', 'EDAM-FORMAT', 'EDAM-OPERATION', 'EDAM-TOPIC'], 'in_subset': ['samples'], 'mixins': ['ontology class'], 'slot_usage': {'name': {'description': "The human-readable 'attribute name' can be set to a string which reflects its context of interpretation, e.g. SEPIO evidence/provenance/confidence annotation or it can default to the name associated with the 'has attribute type' slot ontology term.", 'name': 'name'}}})
- model_config: ClassVar[ConfigDict] = {'arbitrary_types_allowed': True, 'extra': 'forbid', 'strict': False, 'use_enum_values': True, 'validate_assignment': True, 'validate_default': True}
Configuration for the model, should be a dictionary conforming to [ConfigDict][pydantic.config.ConfigDict].
- name: str | None
- provided_by: List[str] | None
- synonym: List[str] | None
- type: List[str] | None
- xref: List[str] | None
- class bkbit.models.library_generation.BarcodedCellSample(*, id: str, iri: str | None = None, category: List[Literal['https://identifiers.org/brain-bican/vocab/BarcodedCellSample', 'bican:BarcodedCellSample']] = ['bican:BarcodedCellSample'], type: List[str] | None = None, name: str | None = None, description: str | None = None, has_attribute: List[str] | None = None, deprecated: bool | None = None, provided_by: List[str] | None = None, xref: List[str] | None = None, full_name: str | None = None, synonym: List[str] | None = None, was_derived_from: List[str] | None = None, was_generated_by: str | None = None, expected_cell_capture: int | None = None)[source]
Bases:
ProvEntity
,MaterialSample
A collection of molecularly barcoded cells. Input will be either dissociated cell sample or enriched cell sample. Cell barcodes are only guaranteed to be unique within this one collection. One dissociated cell sample or enriched cell sample can lead to multiple barcoded cell samples. The sequences of the molecular barcodes are revealed during alignment of the resulting fastq files for the barcoded cell sample. The barcoded cell sample name and the cell level molecular barcode together uniquely identify a single cell.
Create a new model by parsing and validating input data from keyword arguments.
Raises [ValidationError][pydantic_core.ValidationError] if the input data cannot be validated to form a valid model.
self is explicitly positional-only to allow self as a field name.
- category: List[Literal['https://identifiers.org/brain-bican/vocab/BarcodedCellSample', 'bican:BarcodedCellSample']]
- deprecated: bool | None
- description: str | None
- expected_cell_capture: int | None
- full_name: str | None
- has_attribute: List[str] | None
- id: str
- iri: str | None
- linkml_meta: ClassVar[LinkMLMeta] = LinkMLMeta(root={'exact_mappings': ['NIMP:Barcoded%20Cell%20Sample'], 'from_schema': 'https://identifiers.org/brain-bican/library-generation-schema', 'in_subset': ['bican', 'library_generation'], 'mixins': ['ProvEntity'], 'slot_usage': {'category': {'name': 'category', 'pattern': '^bican:[A-Z][A-Za-z]+$'}, 'name': {'description': 'Name of a collection of barcoded cells. Input will be either dissociated_cell_sample or enriched_cell_sample. Cell barcodes are only guaranteed to be unique within this one collection. One dissociated_cell_sample or enriched_cell_sample can lead to multiple barcoded_cell_samples.', 'exact_mappings': ['NIMP:PD-XEMDJF38'], 'local_names': {'NIMP': {'local_name_source': 'NIMP', 'local_name_value': 'barcoded_cell_sample_local_name'}}, 'name': 'name', 'slot_uri': 'bican:4c0e6380-e53f-4173-a474-d41e836fefe3'}, 'was_derived_from': {'description': 'The input dissociated or enriched cell sample(s) from which the barcoded cell sample was derived from.', 'exact_mappings': ['NIMP:has_parent'], 'exactly_one_of': [{'range': 'DissociatedCellSample'}, {'range': 'EnrichedCellSample'}], 'multivalued': True, 'name': 'was_derived_from'}, 'was_generated_by': {'description': 'The barcoding process from which the barcoded cell sample is generated from.', 'name': 'was_generated_by', 'range': 'CellBarcoding'}}})
- model_config: ClassVar[ConfigDict] = {'arbitrary_types_allowed': True, 'extra': 'forbid', 'strict': False, 'use_enum_values': True, 'validate_assignment': True, 'validate_default': True}
Configuration for the model, should be a dictionary conforming to [ConfigDict][pydantic.config.ConfigDict].
- name: str | None
- provided_by: List[str] | None
- synonym: List[str] | None
- type: List[str] | None
- was_derived_from: List[str] | None
- was_generated_by: str | None
- xref: List[str] | None
- class bkbit.models.library_generation.BarcodedCellSampleTechnique(value)[source]
Bases:
str
,Enum
An enumeration.
- ATACOnly = 'ATACOnly'
- GEXOnly = 'GEXOnly'
- Multiome = 'Multiome'
- snm3C_seq = 'snm3C-seq'
- class bkbit.models.library_generation.BiologicalEntity(*, id: str, iri: str | None = None, category: List[Literal['https://w3id.org/biolink/vocab/BiologicalEntity', 'biolink:BiologicalEntity']] = ['biolink:BiologicalEntity'], type: List[str] | None = None, name: str | None = None, description: str | None = None, has_attribute: List[str] | None = None, deprecated: bool | None = None, provided_by: List[str] | None = None, xref: List[str] | None = None, full_name: str | None = None, synonym: List[str] | None = None, in_taxon: List[str] | None = None, in_taxon_label: str | None = None)[source]
Bases:
ThingWithTaxon
,NamedThing
Create a new model by parsing and validating input data from keyword arguments.
Raises [ValidationError][pydantic_core.ValidationError] if the input data cannot be validated to form a valid model.
self is explicitly positional-only to allow self as a field name.
- category: List[Literal['https://w3id.org/biolink/vocab/BiologicalEntity', 'biolink:BiologicalEntity']]
- deprecated: bool | None
- description: str | None
- full_name: str | None
- has_attribute: List[str] | None
- id: str
- in_taxon: List[str] | None
- in_taxon_label: str | None
- iri: str | None
- linkml_meta: ClassVar[LinkMLMeta] = LinkMLMeta(root={'abstract': True, 'aliases': ['bioentity'], 'class_uri': 'biolink:BiologicalEntity', 'definition_uri': 'https://w3id.org/biolink/vocab/BiologicalEntity', 'from_schema': 'https://w3id.org/biolink/bican-biolink-schema', 'mixins': ['thing with taxon'], 'narrow_mappings': ['WIKIDATA:Q28845870', 'STY:T050', 'SIO:010046', 'STY:T129']})
- model_config: ClassVar[ConfigDict] = {'arbitrary_types_allowed': True, 'extra': 'forbid', 'strict': False, 'use_enum_values': True, 'validate_assignment': True, 'validate_default': True}
Configuration for the model, should be a dictionary conforming to [ConfigDict][pydantic.config.ConfigDict].
- name: str | None
- provided_by: List[str] | None
- synonym: List[str] | None
- type: List[str] | None
- xref: List[str] | None
- class bkbit.models.library_generation.BrainSlab(*, id: str, iri: str | None = None, category: List[Literal['https://identifiers.org/brain-bican/vocab/BrainSlab', 'bican:BrainSlab']] = ['bican:BrainSlab'], type: List[str] | None = None, name: str | None = None, description: str | None = None, has_attribute: List[str] | None = None, deprecated: bool | None = None, provided_by: List[str] | None = None, xref: List[str] | None = None, full_name: str | None = None, synonym: List[str] | None = None, was_derived_from: str | None = None, was_generated_by: str | None = None)[source]
Bases:
ProvEntity
,MaterialSample
A thick flat piece of brain tissue obtained by slicing a whole brain, brain hemisphere or subdivision with a blade at regular interval. When multiple brain slabs are obtained from the slicing process, an ordinal is assigned to provide information about the relative positioning of the slabs.
Create a new model by parsing and validating input data from keyword arguments.
Raises [ValidationError][pydantic_core.ValidationError] if the input data cannot be validated to form a valid model.
self is explicitly positional-only to allow self as a field name.
- category: List[Literal['https://identifiers.org/brain-bican/vocab/BrainSlab', 'bican:BrainSlab']]
- deprecated: bool | None
- description: str | None
- full_name: str | None
- has_attribute: List[str] | None
- id: str
- iri: str | None
- linkml_meta: ClassVar[LinkMLMeta] = LinkMLMeta(root={'exact_mappings': ['NIMP:Slab'], 'from_schema': 'https://identifiers.org/brain-bican/library-generation-schema', 'in_subset': ['bican', 'tissue_specimen'], 'mixins': ['ProvEntity'], 'slot_usage': {'category': {'name': 'category', 'pattern': '^bican:[A-Z][A-Za-z]+$'}, 'name': {'description': 'Name of a thick flat piece of brain tissue obtained by slicing a whole brain, brain hemisphere or subdivision with a blade at regular interval. When multiple brain slabs are obtained from the slicing process, an ordinal is assigned to provide information about the relative positioning of the slabs.', 'local_names': {'NIMP': {'local_name_source': 'NIMP', 'local_name_value': 'local_name'}}, 'name': 'name'}, 'was_derived_from': {'any_of': [{'range': 'Donor'}, {'range': 'BrainSlab'}], 'description': 'The donor from which the brain slab was derived from.', 'exact_mappings': ['NIMP:has_parent'], 'name': 'was_derived_from'}}})
- model_config: ClassVar[ConfigDict] = {'arbitrary_types_allowed': True, 'extra': 'forbid', 'strict': False, 'use_enum_values': True, 'validate_assignment': True, 'validate_default': True}
Configuration for the model, should be a dictionary conforming to [ConfigDict][pydantic.config.ConfigDict].
- name: str | None
- provided_by: List[str] | None
- synonym: List[str] | None
- type: List[str] | None
- was_derived_from: str | None
- was_generated_by: str | None
- xref: List[str] | None
- class bkbit.models.library_generation.CdnaAmplification(*, id: str, iri: str | None = None, category: List[Literal['https://identifiers.org/brain-bican/vocab/CdnaAmplification', 'bican:CdnaAmplification']] = ['bican:CdnaAmplification'], type: List[str] | None = None, name: str | None = None, description: str | None = None, has_attribute: List[str] | None = None, deprecated: bool | None = None, provided_by: List[str] | None = None, xref: List[str] | None = None, full_name: str | None = None, synonym: List[str] | None = None, used: str | None = None, amplified_cDNA_PCR_cycles: int | None = None, cDNA_amplification_process_date: date | None = None, cDNA_amplification_set: str | None = None)[source]
Bases:
ProvActivity
,Procedure
The process of creating a collection of cDNA molecules derived and amplified from an input barcoded cell sample. A large amount of cDNA is needed to have accurate and reliable sequencing detection of gene expression. This process generates multiple copies of each mRNA transcript (expressed gene) within each cell while retaining the cell’s unique barcode from the barcoding step. This is a necessary step for GEX methods but is not used for ATAC methods.
Create a new model by parsing and validating input data from keyword arguments.
Raises [ValidationError][pydantic_core.ValidationError] if the input data cannot be validated to form a valid model.
self is explicitly positional-only to allow self as a field name.
- amplified_cDNA_PCR_cycles: int | None
- cDNA_amplification_process_date: date | None
- cDNA_amplification_set: str | None
- category: List[Literal['https://identifiers.org/brain-bican/vocab/CdnaAmplification', 'bican:CdnaAmplification']]
- deprecated: bool | None
- description: str | None
- full_name: str | None
- has_attribute: List[str] | None
- id: str
- iri: str | None
- linkml_meta: ClassVar[LinkMLMeta] = LinkMLMeta(root={'from_schema': 'https://identifiers.org/brain-bican/library-generation-schema', 'in_subset': ['bican', 'library_generation'], 'mixins': ['ProvActivity'], 'slot_usage': {'category': {'name': 'category', 'pattern': '^bican:[A-Z][A-Za-z]+$'}, 'used': {'description': 'The input barcoded cell sample from which amplified cDNA was derived from.', 'name': 'used', 'range': 'BarcodedCellSample'}}})
- model_config: ClassVar[ConfigDict] = {'arbitrary_types_allowed': True, 'extra': 'forbid', 'strict': False, 'use_enum_values': True, 'validate_assignment': True, 'validate_default': True}
Configuration for the model, should be a dictionary conforming to [ConfigDict][pydantic.config.ConfigDict].
- name: str | None
- provided_by: List[str] | None
- synonym: List[str] | None
- type: List[str] | None
- used: str | None
- xref: List[str] | None
- class bkbit.models.library_generation.CellBarcoding(*, id: str, iri: str | None = None, category: List[Literal['https://identifiers.org/brain-bican/vocab/CellBarcoding', 'bican:CellBarcoding']] = ['bican:CellBarcoding'], type: List[str] | None = None, name: str | None = None, description: str | None = None, has_attribute: List[str] | None = None, deprecated: bool | None = None, provided_by: List[str] | None = None, xref: List[str] | None = None, full_name: str | None = None, synonym: List[str] | None = None, used: List[str] | None = None, barcoded_cell_sample_port_well: str | None = None, barcoded_cell_input_quantity_count: int | None = None, process_date: str | None = None, method: BarcodedCellSampleTechnique | None = None)[source]
Bases:
ProvActivity
,Procedure
The process of adding a molecular barcode to individual cells in a sample. The input will be either dissociated cell sample or enriched cell sample. Cell barcodes are only guaranteed to be unique within this one collection. One dissociated cell sample or enriched cell sample can lead to multiple barcoded cell samples.
Create a new model by parsing and validating input data from keyword arguments.
Raises [ValidationError][pydantic_core.ValidationError] if the input data cannot be validated to form a valid model.
self is explicitly positional-only to allow self as a field name.
- barcoded_cell_input_quantity_count: int | None
- barcoded_cell_sample_port_well: str | None
- category: List[Literal['https://identifiers.org/brain-bican/vocab/CellBarcoding', 'bican:CellBarcoding']]
- deprecated: bool | None
- description: str | None
- full_name: str | None
- has_attribute: List[str] | None
- id: str
- iri: str | None
- linkml_meta: ClassVar[LinkMLMeta] = LinkMLMeta(root={'from_schema': 'https://identifiers.org/brain-bican/library-generation-schema', 'in_subset': ['bican', 'library_generation'], 'mixins': ['ProvActivity'], 'slot_usage': {'category': {'name': 'category', 'pattern': '^bican:[A-Z][A-Za-z]+$'}, 'used': {'description': 'The input dissociated or enriched cell sample(s) from which the barcoded cell sample was derived from.', 'exactly_one_of': [{'range': 'DissociatedCellSample'}, {'range': 'EnrichedCellSample'}], 'multivalued': True, 'name': 'used'}}})
- method: BarcodedCellSampleTechnique | None
- model_config: ClassVar[ConfigDict] = {'arbitrary_types_allowed': True, 'extra': 'forbid', 'strict': False, 'use_enum_values': True, 'validate_assignment': True, 'validate_default': True}
Configuration for the model, should be a dictionary conforming to [ConfigDict][pydantic.config.ConfigDict].
- name: str | None
- process_date: str | None
- provided_by: List[str] | None
- synonym: List[str] | None
- type: List[str] | None
- used: List[str] | None
- xref: List[str] | None
- class bkbit.models.library_generation.CellDissociation(*, id: str, iri: str | None = None, category: List[Literal['https://identifiers.org/brain-bican/vocab/CellDissociation', 'bican:CellDissociation']] = ['bican:CellDissociation'], type: List[str] | None = None, name: str | None = None, description: str | None = None, has_attribute: List[str] | None = None, deprecated: bool | None = None, provided_by: List[str] | None = None, xref: List[str] | None = None, full_name: str | None = None, synonym: List[str] | None = None, used: List[str] | None = None, process_date: str | None = None)[source]
Bases:
ProvActivity
,Procedure
The process of generating dissociated cells from an input tissue sample. This process could also introduce a tissue-source barcode (eg cell hashing), allowing mixing of cell dissociation samples at the cell barcoding step.
Create a new model by parsing and validating input data from keyword arguments.
Raises [ValidationError][pydantic_core.ValidationError] if the input data cannot be validated to form a valid model.
self is explicitly positional-only to allow self as a field name.
- category: List[Literal['https://identifiers.org/brain-bican/vocab/CellDissociation', 'bican:CellDissociation']]
- deprecated: bool | None
- description: str | None
- full_name: str | None
- has_attribute: List[str] | None
- id: str
- iri: str | None
- linkml_meta: ClassVar[LinkMLMeta] = LinkMLMeta(root={'from_schema': 'https://identifiers.org/brain-bican/library-generation-schema', 'in_subset': ['bican', 'library_generation'], 'mixins': ['ProvActivity'], 'slot_usage': {'category': {'name': 'category', 'pattern': '^bican:[A-Z][A-Za-z]+$'}, 'used': {'description': 'The input tissue sample(s) from which the dissociated cell sample was derived from.', 'multivalued': True, 'name': 'used', 'range': 'TissueSample'}}})
- model_config: ClassVar[ConfigDict] = {'arbitrary_types_allowed': True, 'extra': 'forbid', 'strict': False, 'use_enum_values': True, 'validate_assignment': True, 'validate_default': True}
Configuration for the model, should be a dictionary conforming to [ConfigDict][pydantic.config.ConfigDict].
- name: str | None
- process_date: str | None
- provided_by: List[str] | None
- synonym: List[str] | None
- type: List[str] | None
- used: List[str] | None
- xref: List[str] | None
- class bkbit.models.library_generation.CellEnrichment(*, id: str, iri: str | None = None, category: List[Literal['https://identifiers.org/brain-bican/vocab/CellEnrichment', 'bican:CellEnrichment']] = ['bican:CellEnrichment'], type: List[str] | None = None, name: str | None = None, description: str | None = None, has_attribute: List[str] | None = None, deprecated: bool | None = None, provided_by: List[str] | None = None, xref: List[str] | None = None, full_name: str | None = None, synonym: List[str] | None = None, used: List[str] | None = None, process_date: str | None = None)[source]
Bases:
ProvActivity
,Procedure
The process of enriching a dissociated cell sample by including or excluding cells of different types based on an enrichment plan using techniques such as fluorescence-activated cell sorting (FACS). This process could also introduce a tissue-source barcode (eg cell hashing), allowing mixing of cell enriched samples at the cell barcoding step.
Create a new model by parsing and validating input data from keyword arguments.
Raises [ValidationError][pydantic_core.ValidationError] if the input data cannot be validated to form a valid model.
self is explicitly positional-only to allow self as a field name.
- category: List[Literal['https://identifiers.org/brain-bican/vocab/CellEnrichment', 'bican:CellEnrichment']]
- deprecated: bool | None
- description: str | None
- full_name: str | None
- has_attribute: List[str] | None
- id: str
- iri: str | None
- linkml_meta: ClassVar[LinkMLMeta] = LinkMLMeta(root={'from_schema': 'https://identifiers.org/brain-bican/library-generation-schema', 'in_subset': ['bican', 'library_generation'], 'mixins': ['ProvActivity'], 'slot_usage': {'category': {'name': 'category', 'pattern': '^bican:[A-Z][A-Za-z]+$'}, 'used': {'description': 'The input dissociated cell sample(s) from which the enriched cell sample was derived from.', 'multivalued': True, 'name': 'used', 'range': 'DissociatedCellSample'}}})
- model_config: ClassVar[ConfigDict] = {'arbitrary_types_allowed': True, 'extra': 'forbid', 'strict': False, 'use_enum_values': True, 'validate_assignment': True, 'validate_default': True}
Configuration for the model, should be a dictionary conforming to [ConfigDict][pydantic.config.ConfigDict].
- name: str | None
- process_date: str | None
- provided_by: List[str] | None
- synonym: List[str] | None
- type: List[str] | None
- used: List[str] | None
- xref: List[str] | None
- class bkbit.models.library_generation.Checksum(*, id: str, iri: str | None = None, category: List[Literal['https://identifiers.org/brain-bican/vocab/Checksum', 'bican:Checksum']] = ['bican:Checksum'], type: List[str] | None = None, name: str | None = None, description: str | None = None, has_attribute: List[str] | None = None, deprecated: bool | None = None, checksum_algorithm: DigestType | None = None, value: str | None = None)[source]
Bases:
Entity
Checksum values associated with digital entities.
Create a new model by parsing and validating input data from keyword arguments.
Raises [ValidationError][pydantic_core.ValidationError] if the input data cannot be validated to form a valid model.
self is explicitly positional-only to allow self as a field name.
- category: List[Literal['https://identifiers.org/brain-bican/vocab/Checksum', 'bican:Checksum']]
- checksum_algorithm: DigestType | None
- deprecated: bool | None
- description: str | None
- has_attribute: List[str] | None
- id: str
- iri: str | None
- linkml_meta: ClassVar[LinkMLMeta] = LinkMLMeta(root={'from_schema': 'https://identifiers.org/brain-bican/bican-core-schema'})
- model_config: ClassVar[ConfigDict] = {'arbitrary_types_allowed': True, 'extra': 'forbid', 'strict': False, 'use_enum_values': True, 'validate_assignment': True, 'validate_default': True}
Configuration for the model, should be a dictionary conforming to [ConfigDict][pydantic.config.ConfigDict].
- name: str | None
- type: List[str] | None
- value: str | None
- class bkbit.models.library_generation.ChemicalEntityOrGeneOrGeneProduct[source]
Bases:
ConfiguredBaseModel
A union of chemical entities and children, and gene or gene product. This mixin is helpful to use when searching across chemical entities that must include genes and their children as chemical entities.
Create a new model by parsing and validating input data from keyword arguments.
Raises [ValidationError][pydantic_core.ValidationError] if the input data cannot be validated to form a valid model.
self is explicitly positional-only to allow self as a field name.
- linkml_meta: ClassVar[LinkMLMeta] = LinkMLMeta(root={'class_uri': 'biolink:ChemicalEntityOrGeneOrGeneProduct', 'definition_uri': 'https://w3id.org/biolink/vocab/ChemicalEntityOrGeneOrGeneProduct', 'from_schema': 'https://w3id.org/biolink/bican-biolink-schema', 'mixin': True})
- model_config: ClassVar[ConfigDict] = {'arbitrary_types_allowed': True, 'extra': 'forbid', 'strict': False, 'use_enum_values': True, 'validate_assignment': True, 'validate_default': True}
Configuration for the model, should be a dictionary conforming to [ConfigDict][pydantic.config.ConfigDict].
- class bkbit.models.library_generation.ConfiguredBaseModel[source]
Bases:
BaseModel
Create a new model by parsing and validating input data from keyword arguments.
Raises [ValidationError][pydantic_core.ValidationError] if the input data cannot be validated to form a valid model.
self is explicitly positional-only to allow self as a field name.
- model_config: ClassVar[ConfigDict] = {'arbitrary_types_allowed': True, 'extra': 'forbid', 'strict': False, 'use_enum_values': True, 'validate_assignment': True, 'validate_default': True}
Configuration for the model, should be a dictionary conforming to [ConfigDict][pydantic.config.ConfigDict].
- class bkbit.models.library_generation.Dataset(*, id: str, iri: str | None = None, category: List[Literal['https://w3id.org/biolink/vocab/Dataset', 'biolink:Dataset']] = ['biolink:Dataset'], type: List[str] | None = None, name: str | None = None, description: str | None = None, has_attribute: List[str] | None = None, deprecated: bool | None = None, provided_by: List[str] | None = None, xref: List[str] | None = None, full_name: str | None = None, synonym: List[str] | None = None, license: str | None = None, rights: str | None = None, format: str | None = None, creation_date: date | None = None)[source]
Bases:
InformationContentEntity
an item that refers to a collection of data from a data source.
Create a new model by parsing and validating input data from keyword arguments.
Raises [ValidationError][pydantic_core.ValidationError] if the input data cannot be validated to form a valid model.
self is explicitly positional-only to allow self as a field name.
- category: List[Literal['https://w3id.org/biolink/vocab/Dataset', 'biolink:Dataset']]
- creation_date: date | None
- deprecated: bool | None
- description: str | None
- format: str | None
- full_name: str | None
- has_attribute: List[str] | None
- id: str
- iri: str | None
- license: str | None
- linkml_meta: ClassVar[LinkMLMeta] = LinkMLMeta(root={'class_uri': 'biolink:Dataset', 'definition_uri': 'https://w3id.org/biolink/vocab/Dataset', 'exact_mappings': ['IAO:0000100', 'dctypes:Dataset', 'schema:dataset', 'dcid:Dataset'], 'from_schema': 'https://w3id.org/biolink/bican-biolink-schema'})
- model_config: ClassVar[ConfigDict] = {'arbitrary_types_allowed': True, 'extra': 'forbid', 'strict': False, 'use_enum_values': True, 'validate_assignment': True, 'validate_default': True}
Configuration for the model, should be a dictionary conforming to [ConfigDict][pydantic.config.ConfigDict].
- name: str | None
- provided_by: List[str] | None
- rights: str | None
- synonym: List[str] | None
- type: List[str] | None
- xref: List[str] | None
- class bkbit.models.library_generation.DigestType(value)[source]
Bases:
str
,Enum
An enumeration.
- MD5 = 'spdx:checksumAlgorithm_md5'
- SHA1 = 'spdx:checksumAlgorithm_sha1'
- SHA256 = 'spdx:checksumAlgorithm_sha256'
- class bkbit.models.library_generation.DigitalAsset(*, id: str, iri: str | None = None, category: List[Literal['https://identifiers.org/brain-bican/vocab/DigitalAsset', 'bican:DigitalAsset']] = ['bican:DigitalAsset'], type: List[str] | None = None, name: str | None = None, description: str | None = None, has_attribute: List[str] | None = None, deprecated: bool | None = None, provided_by: List[str] | None = None, xref: List[str] | None = None, full_name: str | None = None, synonym: List[str] | None = None, license: str | None = None, rights: str | None = None, format: str | None = None, creation_date: date | None = None, was_derived_from: str | None = None, was_generated_by: str | None = None, digest: List[Checksum | str] | None = None, content_url: str | None = None, data_type: str | None = None)[source]
Bases:
ProvEntity
,Dataset
Create a new model by parsing and validating input data from keyword arguments.
Raises [ValidationError][pydantic_core.ValidationError] if the input data cannot be validated to form a valid model.
self is explicitly positional-only to allow self as a field name.
- category: List[Literal['https://identifiers.org/brain-bican/vocab/DigitalAsset', 'bican:DigitalAsset']]
- content_url: str | None
- creation_date: date | None
- data_type: str | None
- deprecated: bool | None
- description: str | None
- format: str | None
- full_name: str | None
- has_attribute: List[str] | None
- id: str
- iri: str | None
- license: str | None
- linkml_meta: ClassVar[LinkMLMeta] = LinkMLMeta(root={'from_schema': 'https://identifiers.org/brain-bican/library-generation-schema', 'mixins': ['ProvEntity'], 'slot_usage': {'category': {'name': 'category', 'pattern': '^bican:[A-Z][A-Za-z]+$'}, 'content_url': {'name': 'content_url'}, 'digest': {'name': 'digest'}, 'was_derived_from': {'name': 'was_derived_from', 'range': 'LibraryPool'}}})
- model_config: ClassVar[ConfigDict] = {'arbitrary_types_allowed': True, 'extra': 'forbid', 'strict': False, 'use_enum_values': True, 'validate_assignment': True, 'validate_default': True}
Configuration for the model, should be a dictionary conforming to [ConfigDict][pydantic.config.ConfigDict].
- name: str | None
- provided_by: List[str] | None
- rights: str | None
- synonym: List[str] | None
- type: List[str] | None
- was_derived_from: str | None
- was_generated_by: str | None
- xref: List[str] | None
- class bkbit.models.library_generation.DissectionRoiDelineation(*, id: str, iri: str | None = None, category: List[Literal['https://identifiers.org/brain-bican/vocab/DissectionRoiDelineation', 'bican:DissectionRoiDelineation']] = ['bican:DissectionRoiDelineation'], type: List[str] | None = None, name: str | None = None, description: str | None = None, has_attribute: List[str] | None = None, deprecated: bool | None = None, provided_by: List[str] | None = None, xref: List[str] | None = None, full_name: str | None = None, synonym: List[str] | None = None, used: str | None = None)[source]
Bases:
ProvActivity
,Procedure
The process of outlining a region of interest on a brain slab image to guide the dissection and generation of a tissue sample.
Create a new model by parsing and validating input data from keyword arguments.
Raises [ValidationError][pydantic_core.ValidationError] if the input data cannot be validated to form a valid model.
self is explicitly positional-only to allow self as a field name.
- category: List[Literal['https://identifiers.org/brain-bican/vocab/DissectionRoiDelineation', 'bican:DissectionRoiDelineation']]
- deprecated: bool | None
- description: str | None
- full_name: str | None
- has_attribute: List[str] | None
- id: str
- iri: str | None
- linkml_meta: ClassVar[LinkMLMeta] = LinkMLMeta(root={'from_schema': 'https://identifiers.org/brain-bican/library-generation-schema', 'in_subset': ['bican', 'library_generation'], 'mixins': ['ProvActivity'], 'slot_usage': {'category': {'name': 'category', 'pattern': '^bican:[A-Z][A-Za-z]+$'}, 'used': {'description': 'The brain slab that was annotated by the delineation process.', 'name': 'used', 'range': 'BrainSlab'}}})
- model_config: ClassVar[ConfigDict] = {'arbitrary_types_allowed': True, 'extra': 'forbid', 'strict': False, 'use_enum_values': True, 'validate_assignment': True, 'validate_default': True}
Configuration for the model, should be a dictionary conforming to [ConfigDict][pydantic.config.ConfigDict].
- name: str | None
- provided_by: List[str] | None
- synonym: List[str] | None
- type: List[str] | None
- used: str | None
- xref: List[str] | None
- class bkbit.models.library_generation.DissectionRoiPolygon(*, id: str, iri: str | None = None, category: List[Literal['https://identifiers.org/brain-bican/vocab/DissectionRoiPolygon', 'bican:DissectionRoiPolygon']] = ['bican:DissectionRoiPolygon'], type: List[str] | None = None, name: str | None = None, description: str | None = None, has_attribute: List[str] | None = None, deprecated: bool | None = None, was_derived_from: str | None = None, was_generated_by: str | None = None, annotates: str | None = None)[source]
Bases:
ProvEntity
,Entity
A polygon annotated on a brain slab image delineating a region of interest (ROI) for a tissue sample dissectioning.
Create a new model by parsing and validating input data from keyword arguments.
Raises [ValidationError][pydantic_core.ValidationError] if the input data cannot be validated to form a valid model.
self is explicitly positional-only to allow self as a field name.
- annotates: str | None
- category: List[Literal['https://identifiers.org/brain-bican/vocab/DissectionRoiPolygon', 'bican:DissectionRoiPolygon']]
- deprecated: bool | None
- description: str | None
- has_attribute: List[str] | None
- id: str
- iri: str | None
- linkml_meta: ClassVar[LinkMLMeta] = LinkMLMeta(root={'exact_mappings': ['NIMP:Specimen%20Dissected%20ROI'], 'from_schema': 'https://identifiers.org/brain-bican/library-generation-schema', 'in_subset': ['bican', 'tissue_specimen'], 'mixins': ['ProvEntity'], 'slot_usage': {'category': {'name': 'category', 'pattern': '^bican:[A-Z][A-Za-z]+$'}, 'name': {'description': 'Name of a polygon annotated on a brain slab image delineating a region of interest (ROI) for a tissue sample dissectioning.', 'local_names': {'NIMP': {'local_name_source': 'NIMP', 'local_name_value': 'local_name'}}, 'name': 'name'}, 'was_generated_by': {'description': 'The delineation process from which the dissection ROI polygon was generated by.', 'name': 'was_generated_by', 'range': 'DissectionRoiDelineation'}}})
- model_config: ClassVar[ConfigDict] = {'arbitrary_types_allowed': True, 'extra': 'forbid', 'strict': False, 'use_enum_values': True, 'validate_assignment': True, 'validate_default': True}
Configuration for the model, should be a dictionary conforming to [ConfigDict][pydantic.config.ConfigDict].
- name: str | None
- type: List[str] | None
- was_derived_from: str | None
- was_generated_by: str | None
- class bkbit.models.library_generation.DissociatedCellSample(*, id: str, iri: str | None = None, category: List[Literal['https://identifiers.org/brain-bican/vocab/DissociatedCellSample', 'bican:DissociatedCellSample']] = ['bican:DissociatedCellSample'], type: List[str] | None = None, name: str | None = None, description: str | None = None, has_attribute: List[str] | None = None, deprecated: bool | None = None, provided_by: List[str] | None = None, xref: List[str] | None = None, full_name: str | None = None, synonym: List[str] | None = None, was_derived_from: List[str] | None = None, was_generated_by: str | None = None, dissociated_cell_sample_cell_prep_type: DissociatedCellSampleCellPrepType | None = None, dissociated_cell_oligo_tag_name: DissociatedCellSampleCellLabelBarcode | None = None)[source]
Bases:
ProvEntity
,MaterialSample
A collection of dissociated cells or nuclei derived from dissociation of a tissue sample.
Create a new model by parsing and validating input data from keyword arguments.
Raises [ValidationError][pydantic_core.ValidationError] if the input data cannot be validated to form a valid model.
self is explicitly positional-only to allow self as a field name.
- category: List[Literal['https://identifiers.org/brain-bican/vocab/DissociatedCellSample', 'bican:DissociatedCellSample']]
- deprecated: bool | None
- description: str | None
- dissociated_cell_oligo_tag_name: DissociatedCellSampleCellLabelBarcode | None
- dissociated_cell_sample_cell_prep_type: DissociatedCellSampleCellPrepType | None
- full_name: str | None
- has_attribute: List[str] | None
- id: str
- iri: str | None
- linkml_meta: ClassVar[LinkMLMeta] = LinkMLMeta(root={'exact_mappings': ['NIMP:Dissociated%20Cell%20Sample'], 'from_schema': 'https://identifiers.org/brain-bican/library-generation-schema', 'in_subset': ['bican', 'library_generation'], 'mixins': ['ProvEntity'], 'slot_usage': {'category': {'name': 'category', 'pattern': '^bican:[A-Z][A-Za-z]+$'}, 'name': {'description': 'Name of a collection of dissociated cells or nuclei derived from dissociation of a tissue sample.', 'exact_mappings': ['NIMP:PD-RQRWHS40'], 'local_names': {'NIMP': {'local_name_source': 'NIMP', 'local_name_value': 'dissociated_cell_sample_local_name'}}, 'name': 'name', 'slot_uri': 'bican:65e2c7da-9eb4-45b2-8ccb-d69ef9785ee2'}, 'was_derived_from': {'description': 'The input tissue sample(s) from which dissociated cell sample was derived from.', 'exact_mappings': ['NIMP:has_parent'], 'multivalued': True, 'name': 'was_derived_from', 'range': 'TissueSample'}, 'was_generated_by': {'description': 'The cell dissociation process from which the dissociated cell sample was generated by.', 'name': 'was_generated_by', 'range': 'CellDissociation'}}})
- model_config: ClassVar[ConfigDict] = {'arbitrary_types_allowed': True, 'extra': 'forbid', 'strict': False, 'use_enum_values': True, 'validate_assignment': True, 'validate_default': True}
Configuration for the model, should be a dictionary conforming to [ConfigDict][pydantic.config.ConfigDict].
- name: str | None
- provided_by: List[str] | None
- synonym: List[str] | None
- type: List[str] | None
- was_derived_from: List[str] | None
- was_generated_by: str | None
- xref: List[str] | None
- class bkbit.models.library_generation.DissociatedCellSampleCellLabelBarcode(value)[source]
Bases:
str
,Enum
An enumeration.
- CMO301 = 'CMO301'
- CMO302 = 'CMO302'
- CMO303 = 'CMO303'
- CMO304 = 'CMO304'
- CMO305 = 'CMO305'
- CMO306 = 'CMO306'
- CMO307 = 'CMO307'
- CMO308 = 'CMO308'
- CMO309 = 'CMO309'
- CMO310 = 'CMO310'
- CMO311 = 'CMO311'
- CMO312 = 'CMO312'
- number_2nt_001 = '2nt-001'
- number_2nt_002 = '2nt-002'
- number_2nt_003 = '2nt-003'
- number_2nt_004 = '2nt-004'
- number_3nt_001 = '3nt-001'
- number_3nt_002 = '3nt-002'
- number_3nt_003 = '3nt-003'
- number_3nt_004 = '3nt-004'
- number_3nt_005 = '3nt-005'
- number_3nt_006 = '3nt-006'
- class bkbit.models.library_generation.DissociatedCellSampleCellPrepType(value)[source]
Bases:
str
,Enum
An enumeration.
- Cells = 'Cells'
- Nuclei = 'Nuclei'
- class bkbit.models.library_generation.Donor(*, id: str, iri: str | None = None, category: List[Literal['https://identifiers.org/brain-bican/vocab/Donor', 'bican:Donor']] = ['bican:Donor'], type: List[str] | None = None, name: str | None = None, description: str | None = None, has_attribute: List[str] | None = None, deprecated: bool | None = None, provided_by: List[str] | None = None, xref: List[str] | None = None, full_name: str | None = None, synonym: List[str] | None = None, in_taxon: List[str] | None = None, in_taxon_label: str | None = None, was_derived_from: str | None = None, was_generated_by: str | None = None, biological_sex: Sex | None = None, age_at_death_description: str | None = None, age_at_death_reference_point: AgeAtDeathReferencePoint | None = None, age_at_death_unit: AgeAtDeathUnit | None = None, age_at_death_value: float | None = None, donor_species: str | None = None)[source]
Bases:
ProvEntity
,ThingWithTaxon
,PhysicalEntity
A person or organism that is the source of a biological sample for scientific study. Many biological samples are generated from a single donor.
Create a new model by parsing and validating input data from keyword arguments.
Raises [ValidationError][pydantic_core.ValidationError] if the input data cannot be validated to form a valid model.
self is explicitly positional-only to allow self as a field name.
- age_at_death_description: str | None
- age_at_death_reference_point: AgeAtDeathReferencePoint | None
- age_at_death_unit: AgeAtDeathUnit | None
- age_at_death_value: float | None
- category: List[Literal['https://identifiers.org/brain-bican/vocab/Donor', 'bican:Donor']]
- deprecated: bool | None
- description: str | None
- donor_species: str | None
- full_name: str | None
- has_attribute: List[str] | None
- id: str
- in_taxon: List[str] | None
- in_taxon_label: str | None
- iri: str | None
- linkml_meta: ClassVar[LinkMLMeta] = LinkMLMeta(root={'exact_mappings': ['NIMP:Donor'], 'from_schema': 'https://identifiers.org/brain-bican/library-generation-schema', 'mixins': ['thing with taxon', 'ProvEntity'], 'slot_usage': {'category': {'name': 'category', 'pattern': '^bican:[A-Z][A-Za-z]+$'}, 'name': {'description': 'Name of person or organism that is the source of a biological sample for scientific study. Many biological samples are generated from a single donor.', 'local_names': {'NIMP': {'local_name_source': 'NIMP', 'local_name_value': 'donor_local_id'}}, 'name': 'name'}}})
- model_config: ClassVar[ConfigDict] = {'arbitrary_types_allowed': True, 'extra': 'forbid', 'strict': False, 'use_enum_values': True, 'validate_assignment': True, 'validate_default': True}
Configuration for the model, should be a dictionary conforming to [ConfigDict][pydantic.config.ConfigDict].
- name: str | None
- provided_by: List[str] | None
- synonym: List[str] | None
- type: List[str] | None
- was_derived_from: str | None
- was_generated_by: str | None
- xref: List[str] | None
- class bkbit.models.library_generation.EnrichedCellSample(*, id: str, iri: str | None = None, category: List[Literal['https://identifiers.org/brain-bican/vocab/EnrichedCellSample', 'bican:EnrichedCellSample']] = ['bican:EnrichedCellSample'], type: List[str] | None = None, name: str | None = None, description: str | None = None, has_attribute: List[str] | None = None, deprecated: bool | None = None, provided_by: List[str] | None = None, xref: List[str] | None = None, full_name: str | None = None, synonym: List[str] | None = None, was_derived_from: List[str] | None = None, was_generated_by: str | None = None, enrichment_population: str | None = None, cell_source_oligo_name: str | None = None, histone_modification_marker: str | None = None)[source]
Bases:
ProvEntity
,MaterialSample
A collection of enriched cells or nuclei after enrichment process, usually via fluorescence-activated cell sorting (FACS) using the enrichment plan, is applied to dissociated cell sample.
Create a new model by parsing and validating input data from keyword arguments.
Raises [ValidationError][pydantic_core.ValidationError] if the input data cannot be validated to form a valid model.
self is explicitly positional-only to allow self as a field name.
- category: List[Literal['https://identifiers.org/brain-bican/vocab/EnrichedCellSample', 'bican:EnrichedCellSample']]
- cell_source_oligo_name: str | None
- deprecated: bool | None
- description: str | None
- enrichment_population: str | None
- full_name: str | None
- has_attribute: List[str] | None
- histone_modification_marker: str | None
- id: str
- iri: str | None
- linkml_meta: ClassVar[LinkMLMeta] = LinkMLMeta(root={'exact_mappings': ['NIMP:Enriched%20Cell%20Sample'], 'from_schema': 'https://identifiers.org/brain-bican/library-generation-schema', 'in_subset': ['bican', 'library_generation'], 'mixins': ['ProvEntity'], 'slot_usage': {'category': {'name': 'category', 'pattern': '^bican:[A-Z][A-Za-z]+$'}, 'name': {'description': 'Name of collection of enriched cells or nuclei after enrichment process (usually via FACS using the Enrichment Plan) applied to dissociated_cell_sample.', 'exact_mappings': ['NIMP:PD-BERWTM41'], 'local_names': {'NIMP': {'local_name_source': 'NIMP', 'local_name_value': 'enriched_cell_sample_local_name'}}, 'name': 'name', 'slot_uri': 'bican:bb3fc701-23a7-45c1-890d-7471730e0ec1'}, 'was_derived_from': {'description': 'The dissociated or enriched cell sample(s) from which the enriched cell sample was derived from.', 'exact_mappings': ['NIMP:has_parent'], 'exactly_one_of': [{'range': 'DissociatedCellSample'}, {'range': 'EnrichedCellSample'}], 'multivalued': True, 'name': 'was_derived_from'}, 'was_generated_by': {'any_of': [{'range': 'CellEnrichment'}, {'range': 'EnrichedCellSampleSplitting'}], 'description': 'The cell enrichment or sample splitting process from which the enriched cell sample was generated by.', 'name': 'was_generated_by'}}})
- model_config: ClassVar[ConfigDict] = {'arbitrary_types_allowed': True, 'extra': 'forbid', 'strict': False, 'use_enum_values': True, 'validate_assignment': True, 'validate_default': True}
Configuration for the model, should be a dictionary conforming to [ConfigDict][pydantic.config.ConfigDict].
- name: str | None
- provided_by: List[str] | None
- synonym: List[str] | None
- type: List[str] | None
- was_derived_from: List[str] | None
- was_generated_by: str | None
- xref: List[str] | None
- class bkbit.models.library_generation.EnrichedCellSampleSplitting(*, id: str, iri: str | None = None, category: List[Literal['https://identifiers.org/brain-bican/vocab/EnrichedCellSampleSplitting', 'bican:EnrichedCellSampleSplitting']] = ['bican:EnrichedCellSampleSplitting'], type: List[str] | None = None, name: str | None = None, description: str | None = None, has_attribute: List[str] | None = None, deprecated: bool | None = None, provided_by: List[str] | None = None, xref: List[str] | None = None, full_name: str | None = None, synonym: List[str] | None = None, used: str | None = None)[source]
Bases:
ProvActivity
,Procedure
The process of splitting an enriched cell sample into several portions. Each portion may be used by the same or different groups for different scientific studies.
Create a new model by parsing and validating input data from keyword arguments.
Raises [ValidationError][pydantic_core.ValidationError] if the input data cannot be validated to form a valid model.
self is explicitly positional-only to allow self as a field name.
- category: List[Literal['https://identifiers.org/brain-bican/vocab/EnrichedCellSampleSplitting', 'bican:EnrichedCellSampleSplitting']]
- deprecated: bool | None
- description: str | None
- full_name: str | None
- has_attribute: List[str] | None
- id: str
- iri: str | None
- linkml_meta: ClassVar[LinkMLMeta] = LinkMLMeta(root={'from_schema': 'https://identifiers.org/brain-bican/library-generation-schema', 'in_subset': ['bican', 'library_generation'], 'mixins': ['ProvActivity'], 'slot_usage': {'category': {'name': 'category', 'pattern': '^bican:[A-Z][A-Za-z]+$'}, 'used': {'description': 'The enrichment cell sample splitting process from which the enriched cell sample was generated by.', 'name': 'used', 'range': 'EnrichedCellSample'}}})
- model_config: ClassVar[ConfigDict] = {'arbitrary_types_allowed': True, 'extra': 'forbid', 'strict': False, 'use_enum_values': True, 'validate_assignment': True, 'validate_default': True}
Configuration for the model, should be a dictionary conforming to [ConfigDict][pydantic.config.ConfigDict].
- name: str | None
- provided_by: List[str] | None
- synonym: List[str] | None
- type: List[str] | None
- used: str | None
- xref: List[str] | None
- class bkbit.models.library_generation.Entity(*, id: str, iri: str | None = None, category: List[Literal['https://w3id.org/biolink/vocab/Entity', 'biolink:Entity']] = ['biolink:Entity'], type: List[str] | None = None, name: str | None = None, description: str | None = None, has_attribute: List[str] | None = None, deprecated: bool | None = None)[source]
Bases:
ConfiguredBaseModel
Root Biolink Model class for all things and informational relationships, real or imagined.
Create a new model by parsing and validating input data from keyword arguments.
Raises [ValidationError][pydantic_core.ValidationError] if the input data cannot be validated to form a valid model.
self is explicitly positional-only to allow self as a field name.
- category: List[Literal['https://w3id.org/biolink/vocab/Entity', 'biolink:Entity']]
- deprecated: bool | None
- description: str | None
- has_attribute: List[str] | None
- id: str
- iri: str | None
- linkml_meta: ClassVar[LinkMLMeta] = LinkMLMeta(root={'abstract': True, 'class_uri': 'biolink:Entity', 'definition_uri': 'https://w3id.org/biolink/vocab/Entity', 'from_schema': 'https://w3id.org/biolink/bican-biolink-schema'})
- model_config: ClassVar[ConfigDict] = {'arbitrary_types_allowed': True, 'extra': 'forbid', 'strict': False, 'use_enum_values': True, 'validate_assignment': True, 'validate_default': True}
Configuration for the model, should be a dictionary conforming to [ConfigDict][pydantic.config.ConfigDict].
- name: str | None
- type: List[str] | None
- class bkbit.models.library_generation.Gene(*, id: str, iri: str | None = None, category: List[Literal['https://w3id.org/biolink/vocab/Gene', 'biolink:Gene']] = ['biolink:Gene'], type: List[str] | None = None, name: str | None = None, description: str | None = None, has_attribute: List[str] | None = None, deprecated: bool | None = None, provided_by: List[str] | None = None, xref: List[str] | None = None, full_name: str | None = None, synonym: List[str] | None = None, in_taxon: List[str] | None = None, in_taxon_label: str | None = None, has_biological_sequence: str | None = None, symbol: str | None = None)[source]
Bases:
GeneOrGeneProduct
,ChemicalEntityOrGeneOrGeneProduct
,GenomicEntity
,BiologicalEntity
,PhysicalEssence
,OntologyClass
A region (or regions) that includes all of the sequence elements necessary to encode a functional transcript. A gene locus may include regulatory regions, transcribed regions and/or other functional sequence regions.
Create a new model by parsing and validating input data from keyword arguments.
Raises [ValidationError][pydantic_core.ValidationError] if the input data cannot be validated to form a valid model.
self is explicitly positional-only to allow self as a field name.
- category: List[Literal['https://w3id.org/biolink/vocab/Gene', 'biolink:Gene']]
- deprecated: bool | None
- description: str | None
- full_name: str | None
- has_attribute: List[str] | None
- has_biological_sequence: str | None
- id: str
- in_taxon: List[str] | None
- in_taxon_label: str | None
- iri: str | None
- linkml_meta: ClassVar[LinkMLMeta] = LinkMLMeta(root={'broad_mappings': ['NCIT:C45822'], 'class_uri': 'biolink:Gene', 'definition_uri': 'https://w3id.org/biolink/vocab/Gene', 'exact_mappings': ['SO:0000704', 'SIO:010035', 'WIKIDATA:Q7187', 'dcid:Gene'], 'from_schema': 'https://w3id.org/biolink/bican-biolink-schema', 'id_prefixes': ['NCBIGene', 'ENSEMBL', 'HGNC', 'MGI', 'ZFIN', 'dictyBase', 'WB', 'WormBase', 'FB', 'RGD', 'SGD', 'PomBase', 'OMIM', 'KEGG.GENES', 'UMLS', 'Xenbase', 'AspGD', 'PHARMGKB.GENE'], 'in_subset': ['translator_minimal', 'model_organism_database'], 'mixins': ['gene or gene product', 'genomic entity', 'chemical entity or gene or gene product', 'physical essence', 'ontology class'], 'narrow_mappings': ['bioschemas:gene']})
- model_config: ClassVar[ConfigDict] = {'arbitrary_types_allowed': True, 'extra': 'forbid', 'strict': False, 'use_enum_values': True, 'validate_assignment': True, 'validate_default': True}
Configuration for the model, should be a dictionary conforming to [ConfigDict][pydantic.config.ConfigDict].
- name: str | None
- provided_by: List[str] | None
- symbol: str | None
- synonym: List[str] | None
- type: List[str] | None
- xref: List[str] | None
- class bkbit.models.library_generation.GeneOrGeneProduct(*, name: str | None = None)[source]
Bases:
MacromolecularMachineMixin
A union of gene loci or gene products. Frequently an identifier for one will be used as proxy for another
Create a new model by parsing and validating input data from keyword arguments.
Raises [ValidationError][pydantic_core.ValidationError] if the input data cannot be validated to form a valid model.
self is explicitly positional-only to allow self as a field name.
- linkml_meta: ClassVar[LinkMLMeta] = LinkMLMeta(root={'class_uri': 'biolink:GeneOrGeneProduct', 'definition_uri': 'https://w3id.org/biolink/vocab/GeneOrGeneProduct', 'from_schema': 'https://w3id.org/biolink/bican-biolink-schema', 'id_prefixes': ['CHEMBL.TARGET', 'IUPHAR.FAMILY'], 'mixin': True})
- model_config: ClassVar[ConfigDict] = {'arbitrary_types_allowed': True, 'extra': 'forbid', 'strict': False, 'use_enum_values': True, 'validate_assignment': True, 'validate_default': True}
Configuration for the model, should be a dictionary conforming to [ConfigDict][pydantic.config.ConfigDict].
- name: str | None
- class bkbit.models.library_generation.Genome(*, id: str, iri: str | None = None, category: List[Literal['https://w3id.org/biolink/vocab/Genome', 'biolink:Genome']] = ['biolink:Genome'], type: List[str] | None = None, name: str | None = None, description: str | None = None, has_attribute: List[str] | None = None, deprecated: bool | None = None, provided_by: List[str] | None = None, xref: List[str] | None = None, full_name: str | None = None, synonym: List[str] | None = None, in_taxon: List[str] | None = None, in_taxon_label: str | None = None, has_biological_sequence: str | None = None)[source]
Bases:
GenomicEntity
,BiologicalEntity
,PhysicalEssence
,OntologyClass
A genome is the sum of genetic material within a cell or virion.
Create a new model by parsing and validating input data from keyword arguments.
Raises [ValidationError][pydantic_core.ValidationError] if the input data cannot be validated to form a valid model.
self is explicitly positional-only to allow self as a field name.
- category: List[Literal['https://w3id.org/biolink/vocab/Genome', 'biolink:Genome']]
- deprecated: bool | None
- description: str | None
- full_name: str | None
- has_attribute: List[str] | None
- has_biological_sequence: str | None
- id: str
- in_taxon: List[str] | None
- in_taxon_label: str | None
- iri: str | None
- linkml_meta: ClassVar[LinkMLMeta] = LinkMLMeta(root={'class_uri': 'biolink:Genome', 'close_mappings': ['dcid:GenomeAssemblyUnit'], 'definition_uri': 'https://w3id.org/biolink/vocab/Genome', 'exact_mappings': ['SO:0001026', 'SIO:000984', 'WIKIDATA:Q7020'], 'from_schema': 'https://w3id.org/biolink/bican-biolink-schema', 'in_subset': ['model_organism_database'], 'mixins': ['genomic entity', 'physical essence', 'ontology class']})
- model_config: ClassVar[ConfigDict] = {'arbitrary_types_allowed': True, 'extra': 'forbid', 'strict': False, 'use_enum_values': True, 'validate_assignment': True, 'validate_default': True}
Configuration for the model, should be a dictionary conforming to [ConfigDict][pydantic.config.ConfigDict].
- name: str | None
- provided_by: List[str] | None
- synonym: List[str] | None
- type: List[str] | None
- xref: List[str] | None
- class bkbit.models.library_generation.GenomicEntity(*, has_biological_sequence: str | None = None)[source]
Bases:
ConfiguredBaseModel
Create a new model by parsing and validating input data from keyword arguments.
Raises [ValidationError][pydantic_core.ValidationError] if the input data cannot be validated to form a valid model.
self is explicitly positional-only to allow self as a field name.
- has_biological_sequence: str | None
- linkml_meta: ClassVar[LinkMLMeta] = LinkMLMeta(root={'class_uri': 'biolink:GenomicEntity', 'definition_uri': 'https://w3id.org/biolink/vocab/GenomicEntity', 'from_schema': 'https://w3id.org/biolink/bican-biolink-schema', 'in_subset': ['translator_minimal'], 'mixin': True, 'narrow_mappings': ['STY:T028', 'GENO:0000897']})
- model_config: ClassVar[ConfigDict] = {'arbitrary_types_allowed': True, 'extra': 'forbid', 'strict': False, 'use_enum_values': True, 'validate_assignment': True, 'validate_default': True}
Configuration for the model, should be a dictionary conforming to [ConfigDict][pydantic.config.ConfigDict].
- class bkbit.models.library_generation.InformationContentEntity(*, id: str, iri: str | None = None, category: List[Literal['https://w3id.org/biolink/vocab/InformationContentEntity', 'biolink:InformationContentEntity']] = ['biolink:InformationContentEntity'], type: List[str] | None = None, name: str | None = None, description: str | None = None, has_attribute: List[str] | None = None, deprecated: bool | None = None, provided_by: List[str] | None = None, xref: List[str] | None = None, full_name: str | None = None, synonym: List[str] | None = None, license: str | None = None, rights: str | None = None, format: str | None = None, creation_date: date | None = None)[source]
Bases:
NamedThing
a piece of information that typically describes some topic of discourse or is used as support.
Create a new model by parsing and validating input data from keyword arguments.
Raises [ValidationError][pydantic_core.ValidationError] if the input data cannot be validated to form a valid model.
self is explicitly positional-only to allow self as a field name.
- category: List[Literal['https://w3id.org/biolink/vocab/InformationContentEntity', 'biolink:InformationContentEntity']]
- creation_date: date | None
- deprecated: bool | None
- description: str | None
- format: str | None
- full_name: str | None
- has_attribute: List[str] | None
- id: str
- iri: str | None
- license: str | None
- linkml_meta: ClassVar[LinkMLMeta] = LinkMLMeta(root={'abstract': True, 'aliases': ['information', 'information artefact', 'information entity'], 'class_uri': 'biolink:InformationContentEntity', 'definition_uri': 'https://w3id.org/biolink/vocab/InformationContentEntity', 'exact_mappings': ['IAO:0000030'], 'from_schema': 'https://w3id.org/biolink/bican-biolink-schema', 'id_prefixes': ['doi'], 'narrow_mappings': ['UMLSSG:CONC', 'STY:T077', 'STY:T078', 'STY:T079', 'STY:T080', 'STY:T081', 'STY:T082', 'STY:T089', 'STY:T102', 'STY:T169', 'STY:T171', 'STY:T185']})
- model_config: ClassVar[ConfigDict] = {'arbitrary_types_allowed': True, 'extra': 'forbid', 'strict': False, 'use_enum_values': True, 'validate_assignment': True, 'validate_default': True}
Configuration for the model, should be a dictionary conforming to [ConfigDict][pydantic.config.ConfigDict].
- name: str | None
- provided_by: List[str] | None
- rights: str | None
- synonym: List[str] | None
- type: List[str] | None
- xref: List[str] | None
- class bkbit.models.library_generation.Library(*, id: str, iri: str | None = None, category: List[Literal['https://identifiers.org/brain-bican/vocab/Library', 'bican:Library']] = ['bican:Library'], type: List[str] | None = None, name: str | None = None, description: str | None = None, has_attribute: List[str] | None = None, deprecated: bool | None = None, provided_by: List[str] | None = None, xref: List[str] | None = None, full_name: str | None = None, synonym: List[str] | None = None, was_derived_from: str | None = None, was_generated_by: str | None = None, library_avg_size_bp: int | None = None, library_concentration_nm: float | None = None, library_prep_pass_fail: LibraryPrepPassFail | None = None, library_quantification_fmol: float | None = None, library_quantification_ng: float | None = None, R1_R2_index_name: LibraryR1R2Index | None = None)[source]
Bases:
ProvEntity
,MaterialSample
A collection of fragmented and barcode-indexed DNA molecules for sequencing. An index or barcode is typically introduced to enable identification of library origin to allow libraries to be pooled together for sequencing.
Create a new model by parsing and validating input data from keyword arguments.
Raises [ValidationError][pydantic_core.ValidationError] if the input data cannot be validated to form a valid model.
self is explicitly positional-only to allow self as a field name.
- R1_R2_index_name: LibraryR1R2Index | None
- category: List[Literal['https://identifiers.org/brain-bican/vocab/Library', 'bican:Library']]
- deprecated: bool | None
- description: str | None
- full_name: str | None
- has_attribute: List[str] | None
- id: str
- iri: str | None
- library_avg_size_bp: int | None
- library_concentration_nm: float | None
- library_prep_pass_fail: LibraryPrepPassFail | None
- library_quantification_fmol: float | None
- library_quantification_ng: float | None
- linkml_meta: ClassVar[LinkMLMeta] = LinkMLMeta(root={'exact_mappings': ['NIMP:Library'], 'from_schema': 'https://identifiers.org/brain-bican/library-generation-schema', 'in_subset': ['bican', 'library_generation'], 'mixins': ['ProvEntity'], 'slot_usage': {'category': {'name': 'category', 'pattern': '^bican:[A-Z][A-Za-z]+$'}, 'name': {'description': 'Name of a library, which is a collection of fragmented and barcode-indexed DNA molecules for sequencing. An index or barcode is typically introduced to enable identification of library origin to allow libraries to be pooled together for sequencing.', 'exact_mappings': ['NIMP:PD-AJJUCC35'], 'local_names': {'NIMP': {'local_name_source': 'NIMP', 'local_name_value': 'library_local_name'}}, 'name': 'name', 'slot_uri': 'bican:f717e254-3630-4342-be7b-4d56376e7afe'}, 'was_derived_from': {'any_of': [{'range': 'BarcodedCellSample'}, {'range': 'AmplifiedCdna'}], 'description': 'The input barcoded cell sample or amplified cDNA from which the library was derived from.', 'exact_mappings': ['NIMP:has_parent'], 'name': 'was_derived_from'}, 'was_generated_by': {'description': 'The library construction process from which the library was generated by.', 'name': 'was_generated_by', 'range': 'LibraryConstruction'}}})
- model_config: ClassVar[ConfigDict] = {'arbitrary_types_allowed': True, 'extra': 'forbid', 'strict': False, 'use_enum_values': True, 'validate_assignment': True, 'validate_default': True}
Configuration for the model, should be a dictionary conforming to [ConfigDict][pydantic.config.ConfigDict].
- name: str | None
- provided_by: List[str] | None
- synonym: List[str] | None
- type: List[str] | None
- was_derived_from: str | None
- was_generated_by: str | None
- xref: List[str] | None
- class bkbit.models.library_generation.LibraryAliquot(*, id: str, iri: str | None = None, category: List[Literal['https://identifiers.org/brain-bican/vocab/LibraryAliquot', 'bican:LibraryAliquot']] = ['bican:LibraryAliquot'], type: List[str] | None = None, name: str | None = None, description: str | None = None, has_attribute: List[str] | None = None, deprecated: bool | None = None, provided_by: List[str] | None = None, xref: List[str] | None = None, full_name: str | None = None, synonym: List[str] | None = None, was_derived_from: str | None = None, was_generated_by: str | None = None)[source]
Bases:
ProvEntity
,MaterialSample
One library in the library pool. Each library aliquot in a library pool will have a unique R1/R2 index to allow for sequencing together then separating the sequencing output by originating library aliquot through the process of demultiplexing. The resulting demultiplexed fastq files will include the library aliquot name. A given library may produce multiple library aliquots, which is done in the case of resequencing. Each library aliquot will produce a set of fastq files.
Create a new model by parsing and validating input data from keyword arguments.
Raises [ValidationError][pydantic_core.ValidationError] if the input data cannot be validated to form a valid model.
self is explicitly positional-only to allow self as a field name.
- category: List[Literal['https://identifiers.org/brain-bican/vocab/LibraryAliquot', 'bican:LibraryAliquot']]
- deprecated: bool | None
- description: str | None
- full_name: str | None
- has_attribute: List[str] | None
- id: str
- iri: str | None
- linkml_meta: ClassVar[LinkMLMeta] = LinkMLMeta(root={'exact_mappings': ['NIMP:Library%20Aliquot'], 'from_schema': 'https://identifiers.org/brain-bican/library-generation-schema', 'in_subset': ['bican', 'library_generation'], 'mixins': ['ProvEntity'], 'slot_usage': {'category': {'name': 'category', 'pattern': '^bican:[A-Z][A-Za-z]+$'}, 'name': {'description': 'One library in the library pool. Each Library_aliquot_name in a library pool will have a unique R1/R2 index to allow for sequencing together then separating the sequencing output by originating library aliquot through the process of demultiplexing. The resulting demultiplexed fastq files will include the library_aliquot_name.', 'exact_mappings': ['NIMP:PD-XCXCCC35'], 'local_names': {'NIMP': {'local_name_source': 'NIMP', 'local_name_value': 'library_aliquot_local_name'}}, 'name': 'name', 'slot_uri': 'bican:34191bad-d167-4335-8224-ade897d3728e'}, 'was_derived_from': {'description': 'The input library from which the library aliquot was derived from.', 'exact_mappings': ['NIMP:has_parent'], 'name': 'was_derived_from', 'range': 'Library'}}})
- model_config: ClassVar[ConfigDict] = {'arbitrary_types_allowed': True, 'extra': 'forbid', 'strict': False, 'use_enum_values': True, 'validate_assignment': True, 'validate_default': True}
Configuration for the model, should be a dictionary conforming to [ConfigDict][pydantic.config.ConfigDict].
- name: str | None
- provided_by: List[str] | None
- synonym: List[str] | None
- type: List[str] | None
- was_derived_from: str | None
- was_generated_by: str | None
- xref: List[str] | None
- class bkbit.models.library_generation.LibraryConstruction(*, id: str, iri: str | None = None, category: List[Literal['https://identifiers.org/brain-bican/vocab/LibraryConstruction', 'bican:LibraryConstruction']] = ['bican:LibraryConstruction'], type: List[str] | None = None, name: str | None = None, description: str | None = None, has_attribute: List[str] | None = None, deprecated: bool | None = None, provided_by: List[str] | None = None, xref: List[str] | None = None, full_name: str | None = None, synonym: List[str] | None = None, used: str | None = None, library_method: LibraryTechnique | None = None, library_creation_date: date | None = None, library_input_ng: float | None = None, library_prep_set: str | None = None)[source]
Bases:
ProvActivity
,Procedure
The process of constructing a library from input material (such as amplified cDNA or barcoded cell sample) derived from one or more cell samples. cDNA is fragmented into smaller pieces appropriate for sequencing and at the same time a library index barcode is incorporated to enable identification of library origin, allowing libraries to be pooled together for sequencing.
Create a new model by parsing and validating input data from keyword arguments.
Raises [ValidationError][pydantic_core.ValidationError] if the input data cannot be validated to form a valid model.
self is explicitly positional-only to allow self as a field name.
- category: List[Literal['https://identifiers.org/brain-bican/vocab/LibraryConstruction', 'bican:LibraryConstruction']]
- deprecated: bool | None
- description: str | None
- full_name: str | None
- has_attribute: List[str] | None
- id: str
- iri: str | None
- library_creation_date: date | None
- library_input_ng: float | None
- library_method: LibraryTechnique | None
- library_prep_set: str | None
- linkml_meta: ClassVar[LinkMLMeta] = LinkMLMeta(root={'from_schema': 'https://identifiers.org/brain-bican/library-generation-schema', 'in_subset': ['bican', 'library_generation'], 'mixins': ['ProvActivity'], 'slot_usage': {'category': {'name': 'category', 'pattern': '^bican:[A-Z][A-Za-z]+$'}, 'used': {'any_of': [{'range': 'BarcodedCellSample'}, {'range': 'AmplifiedCdna'}], 'description': 'The input barcoded cell sample or amplified cDNA from which the library was derived from.', 'name': 'used'}}})
- model_config: ClassVar[ConfigDict] = {'arbitrary_types_allowed': True, 'extra': 'forbid', 'strict': False, 'use_enum_values': True, 'validate_assignment': True, 'validate_default': True}
Configuration for the model, should be a dictionary conforming to [ConfigDict][pydantic.config.ConfigDict].
- name: str | None
- provided_by: List[str] | None
- synonym: List[str] | None
- type: List[str] | None
- used: str | None
- xref: List[str] | None
- class bkbit.models.library_generation.LibraryPool(*, id: str, iri: str | None = None, category: List[Literal['https://identifiers.org/brain-bican/vocab/LibraryPool', 'bican:LibraryPool']] = ['bican:LibraryPool'], type: List[str] | None = None, name: str | None = None, description: str | None = None, has_attribute: List[str] | None = None, deprecated: bool | None = None, provided_by: List[str] | None = None, xref: List[str] | None = None, full_name: str | None = None, synonym: List[str] | None = None, was_derived_from: List[str] | None = None, was_generated_by: str | None = None, library_pool_tube_internal_label: str | None = None)[source]
Bases:
ProvEntity
,MaterialSample
A library pool is made up of library aliquots from multiple libraries. Each library aliquot in a library pool will have a unique R1/R2 index to allow for sequencing together then separating the sequencing output by originating library aliquot through the process of demultiplexing.
Create a new model by parsing and validating input data from keyword arguments.
Raises [ValidationError][pydantic_core.ValidationError] if the input data cannot be validated to form a valid model.
self is explicitly positional-only to allow self as a field name.
- category: List[Literal['https://identifiers.org/brain-bican/vocab/LibraryPool', 'bican:LibraryPool']]
- deprecated: bool | None
- description: str | None
- full_name: str | None
- has_attribute: List[str] | None
- id: str
- iri: str | None
- library_pool_tube_internal_label: str | None
- linkml_meta: ClassVar[LinkMLMeta] = LinkMLMeta(root={'exact_mappings': ['NIMP:Library%20Pool'], 'from_schema': 'https://identifiers.org/brain-bican/library-generation-schema', 'in_subset': ['bican', 'library_generation'], 'mixins': ['ProvEntity'], 'slot_usage': {'category': {'name': 'category', 'pattern': '^bican:[A-Z][A-Za-z]+$'}, 'name': {'description': 'Library lab\'s library pool name. For some labs this may be the same as "Libray pool tube local name". Other labs distinguish between the local tube label of the library pool and the library pool name provided to SeqCore for tracking. Local Pool Name is used to communicate sequencing status between SeqCore and Library Labs.', 'exact_mappings': ['NIMP:PD-KKIAPA48'], 'local_names': {'NIMP': {'local_name_source': 'NIMP', 'local_name_value': 'library_pool_local_name'}}, 'name': 'name', 'slot_uri': 'bican:29e0578b-6427-4c93-b29b-bde27fbadeec'}, 'was_derived_from': {'description': 'The input aliquot(s) from which the library pool was derived from.', 'exact_mappings': ['NIMP:has_parent'], 'multivalued': True, 'name': 'was_derived_from', 'range': 'LibraryAliquot'}, 'was_generated_by': {'description': 'The pooling process from which the library pool was generated by.', 'name': 'was_generated_by', 'range': 'LibraryPooling'}}})
- model_config: ClassVar[ConfigDict] = {'arbitrary_types_allowed': True, 'extra': 'forbid', 'strict': False, 'use_enum_values': True, 'validate_assignment': True, 'validate_default': True}
Configuration for the model, should be a dictionary conforming to [ConfigDict][pydantic.config.ConfigDict].
- name: str | None
- provided_by: List[str] | None
- synonym: List[str] | None
- type: List[str] | None
- was_derived_from: List[str] | None
- was_generated_by: str | None
- xref: List[str] | None
- class bkbit.models.library_generation.LibraryPooling(*, id: str, iri: str | None = None, category: List[Literal['https://identifiers.org/brain-bican/vocab/LibraryPooling', 'bican:LibraryPooling']] = ['bican:LibraryPooling'], type: List[str] | None = None, name: str | None = None, description: str | None = None, has_attribute: List[str] | None = None, deprecated: bool | None = None, provided_by: List[str] | None = None, xref: List[str] | None = None, full_name: str | None = None, synonym: List[str] | None = None, used: List[str] | None = None, process_date: str | None = None)[source]
Bases:
ProvActivity
,Procedure
The process of constructing of a libray pool by combining library aliquots from a set of input libraries. Each library aliquot in a library pool will have a unique R1/R2 index to allow for sequencing together then separating the sequencing output by originating library aliquot through the process of demultiplexing.
Create a new model by parsing and validating input data from keyword arguments.
Raises [ValidationError][pydantic_core.ValidationError] if the input data cannot be validated to form a valid model.
self is explicitly positional-only to allow self as a field name.
- category: List[Literal['https://identifiers.org/brain-bican/vocab/LibraryPooling', 'bican:LibraryPooling']]
- deprecated: bool | None
- description: str | None
- full_name: str | None
- has_attribute: List[str] | None
- id: str
- iri: str | None
- linkml_meta: ClassVar[LinkMLMeta] = LinkMLMeta(root={'from_schema': 'https://identifiers.org/brain-bican/library-generation-schema', 'in_subset': ['bican', 'library_generation'], 'mixins': ['ProvActivity'], 'slot_usage': {'category': {'name': 'category', 'pattern': '^bican:[A-Z][A-Za-z]+$'}, 'used': {'description': 'The input aliquot(s) from which the library pool was derived from.', 'multivalued': True, 'name': 'used', 'range': 'LibraryAliquot'}}})
- model_config: ClassVar[ConfigDict] = {'arbitrary_types_allowed': True, 'extra': 'forbid', 'strict': False, 'use_enum_values': True, 'validate_assignment': True, 'validate_default': True}
Configuration for the model, should be a dictionary conforming to [ConfigDict][pydantic.config.ConfigDict].
- name: str | None
- process_date: str | None
- provided_by: List[str] | None
- synonym: List[str] | None
- type: List[str] | None
- used: List[str] | None
- xref: List[str] | None
- class bkbit.models.library_generation.LibraryPrepPassFail(value)[source]
Bases:
str
,Enum
An enumeration.
- Fail = 'Fail'
- Low_QC = 'Low QC'
- Not_evaluated = 'Not evaluated'
- Pass = 'Pass'
- class bkbit.models.library_generation.LibraryR1R2Index(value)[source]
Bases:
str
,Enum
An enumeration.
- SI_NA_A1 = 'SI-NA-A1'
- SI_NA_A10 = 'SI-NA-A10'
- SI_NA_A11 = 'SI-NA-A11'
- SI_NA_A12 = 'SI-NA-A12'
- SI_NA_A2 = 'SI-NA-A2'
- SI_NA_A3 = 'SI-NA-A3'
- SI_NA_A4 = 'SI-NA-A4'
- SI_NA_A5 = 'SI-NA-A5'
- SI_NA_A6 = 'SI-NA-A6'
- SI_NA_A7 = 'SI-NA-A7'
- SI_NA_A8 = 'SI-NA-A8'
- SI_NA_A9 = 'SI-NA-A9'
- SI_NA_B1 = 'SI-NA-B1'
- SI_NA_B10 = 'SI-NA-B10'
- SI_NA_B11 = 'SI-NA-B11'
- SI_NA_B12 = 'SI-NA-B12'
- SI_NA_B2 = 'SI-NA-B2'
- SI_NA_B3 = 'SI-NA-B3'
- SI_NA_B4 = 'SI-NA-B4'
- SI_NA_B5 = 'SI-NA-B5'
- SI_NA_B6 = 'SI-NA-B6'
- SI_NA_B7 = 'SI-NA-B7'
- SI_NA_B8 = 'SI-NA-B8'
- SI_NA_B9 = 'SI-NA-B9'
- SI_NA_C1 = 'SI-NA-C1'
- SI_NA_C10 = 'SI-NA-C10'
- SI_NA_C11 = 'SI-NA-C11'
- SI_NA_C12 = 'SI-NA-C12'
- SI_NA_C2 = 'SI-NA-C2'
- SI_NA_C3 = 'SI-NA-C3'
- SI_NA_C4 = 'SI-NA-C4'
- SI_NA_C5 = 'SI-NA-C5'
- SI_NA_C6 = 'SI-NA-C6'
- SI_NA_C7 = 'SI-NA-C7'
- SI_NA_C8 = 'SI-NA-C8'
- SI_NA_C9 = 'SI-NA-C9'
- SI_NA_D1 = 'SI-NA-D1'
- SI_NA_D10 = 'SI-NA-D10'
- SI_NA_D11 = 'SI-NA-D11'
- SI_NA_D12 = 'SI-NA-D12'
- SI_NA_D2 = 'SI-NA-D2'
- SI_NA_D3 = 'SI-NA-D3'
- SI_NA_D4 = 'SI-NA-D4'
- SI_NA_D5 = 'SI-NA-D5'
- SI_NA_D6 = 'SI-NA-D6'
- SI_NA_D7 = 'SI-NA-D7'
- SI_NA_D8 = 'SI-NA-D8'
- SI_NA_D9 = 'SI-NA-D9'
- SI_NA_E1 = 'SI-NA-E1'
- SI_NA_E10 = 'SI-NA-E10'
- SI_NA_E11 = 'SI-NA-E11'
- SI_NA_E12 = 'SI-NA-E12'
- SI_NA_E2 = 'SI-NA-E2'
- SI_NA_E3 = 'SI-NA-E3'
- SI_NA_E4 = 'SI-NA-E4'
- SI_NA_E5 = 'SI-NA-E5'
- SI_NA_E6 = 'SI-NA-E6'
- SI_NA_E7 = 'SI-NA-E7'
- SI_NA_E8 = 'SI-NA-E8'
- SI_NA_E9 = 'SI-NA-E9'
- SI_NA_F1 = 'SI-NA-F1'
- SI_NA_F10 = 'SI-NA-F10'
- SI_NA_F11 = 'SI-NA-F11'
- SI_NA_F12 = 'SI-NA-F12'
- SI_NA_F2 = 'SI-NA-F2'
- SI_NA_F3 = 'SI-NA-F3'
- SI_NA_F4 = 'SI-NA-F4'
- SI_NA_F5 = 'SI-NA-F5'
- SI_NA_F6 = 'SI-NA-F6'
- SI_NA_F7 = 'SI-NA-F7'
- SI_NA_F8 = 'SI-NA-F8'
- SI_NA_F9 = 'SI-NA-F9'
- SI_NA_G1 = 'SI-NA-G1'
- SI_NA_G10 = 'SI-NA-G10'
- SI_NA_G11 = 'SI-NA-G11'
- SI_NA_G12 = 'SI-NA-G12'
- SI_NA_G2 = 'SI-NA-G2'
- SI_NA_G3 = 'SI-NA-G3'
- SI_NA_G4 = 'SI-NA-G4'
- SI_NA_G5 = 'SI-NA-G5'
- SI_NA_G6 = 'SI-NA-G6'
- SI_NA_G7 = 'SI-NA-G7'
- SI_NA_G8 = 'SI-NA-G8'
- SI_NA_G9 = 'SI-NA-G9'
- SI_NA_H1 = 'SI-NA-H1'
- SI_NA_H10 = 'SI-NA-H10'
- SI_NA_H11 = 'SI-NA-H11'
- SI_NA_H12 = 'SI-NA-H12'
- SI_NA_H2 = 'SI-NA-H2'
- SI_NA_H3 = 'SI-NA-H3'
- SI_NA_H4 = 'SI-NA-H4'
- SI_NA_H5 = 'SI-NA-H5'
- SI_NA_H6 = 'SI-NA-H6'
- SI_NA_H7 = 'SI-NA-H7'
- SI_NA_H8 = 'SI-NA-H8'
- SI_NA_H9 = 'SI-NA-H9'
- SI_NN_A1 = 'SI-NN-A1'
- SI_NN_A10 = 'SI-NN-A10'
- SI_NN_A11 = 'SI-NN-A11'
- SI_NN_A12 = 'SI-NN-A12'
- SI_NN_A2 = 'SI-NN-A2'
- SI_NN_A3 = 'SI-NN-A3'
- SI_NN_A4 = 'SI-NN-A4'
- SI_NN_A5 = 'SI-NN-A5'
- SI_NN_A6 = 'SI-NN-A6'
- SI_NN_A7 = 'SI-NN-A7'
- SI_NN_A8 = 'SI-NN-A8'
- SI_NN_A9 = 'SI-NN-A9'
- SI_NN_B1 = 'SI-NN-B1'
- SI_NN_B10 = 'SI-NN-B10'
- SI_NN_B11 = 'SI-NN-B11'
- SI_NN_B12 = 'SI-NN-B12'
- SI_NN_B2 = 'SI-NN-B2'
- SI_NN_B3 = 'SI-NN-B3'
- SI_NN_B4 = 'SI-NN-B4'
- SI_NN_B5 = 'SI-NN-B5'
- SI_NN_B6 = 'SI-NN-B6'
- SI_NN_B7 = 'SI-NN-B7'
- SI_NN_B8 = 'SI-NN-B8'
- SI_NN_B9 = 'SI-NN-B9'
- SI_NN_C1 = 'SI-NN-C1'
- SI_NN_C10 = 'SI-NN-C10'
- SI_NN_C11 = 'SI-NN-C11'
- SI_NN_C12 = 'SI-NN-C12'
- SI_NN_C2 = 'SI-NN-C2'
- SI_NN_C3 = 'SI-NN-C3'
- SI_NN_C4 = 'SI-NN-C4'
- SI_NN_C5 = 'SI-NN-C5'
- SI_NN_C6 = 'SI-NN-C6'
- SI_NN_C7 = 'SI-NN-C7'
- SI_NN_C8 = 'SI-NN-C8'
- SI_NN_C9 = 'SI-NN-C9'
- SI_NN_D1 = 'SI-NN-D1'
- SI_NN_D10 = 'SI-NN-D10'
- SI_NN_D11 = 'SI-NN-D11'
- SI_NN_D12 = 'SI-NN-D12'
- SI_NN_D2 = 'SI-NN-D2'
- SI_NN_D3 = 'SI-NN-D3'
- SI_NN_D4 = 'SI-NN-D4'
- SI_NN_D5 = 'SI-NN-D5'
- SI_NN_D6 = 'SI-NN-D6'
- SI_NN_D7 = 'SI-NN-D7'
- SI_NN_D8 = 'SI-NN-D8'
- SI_NN_D9 = 'SI-NN-D9'
- SI_NN_E1 = 'SI-NN-E1'
- SI_NN_E10 = 'SI-NN-E10'
- SI_NN_E11 = 'SI-NN-E11'
- SI_NN_E12 = 'SI-NN-E12'
- SI_NN_E2 = 'SI-NN-E2'
- SI_NN_E3 = 'SI-NN-E3'
- SI_NN_E4 = 'SI-NN-E4'
- SI_NN_E5 = 'SI-NN-E5'
- SI_NN_E6 = 'SI-NN-E6'
- SI_NN_E7 = 'SI-NN-E7'
- SI_NN_E8 = 'SI-NN-E8'
- SI_NN_E9 = 'SI-NN-E9'
- SI_NN_F1 = 'SI-NN-F1'
- SI_NN_F10 = 'SI-NN-F10'
- SI_NN_F11 = 'SI-NN-F11'
- SI_NN_F12 = 'SI-NN-F12'
- SI_NN_F2 = 'SI-NN-F2'
- SI_NN_F3 = 'SI-NN-F3'
- SI_NN_F4 = 'SI-NN-F4'
- SI_NN_F5 = 'SI-NN-F5'
- SI_NN_F6 = 'SI-NN-F6'
- SI_NN_F7 = 'SI-NN-F7'
- SI_NN_F8 = 'SI-NN-F8'
- SI_NN_F9 = 'SI-NN-F9'
- SI_NN_G1 = 'SI-NN-G1'
- SI_NN_G10 = 'SI-NN-G10'
- SI_NN_G11 = 'SI-NN-G11'
- SI_NN_G12 = 'SI-NN-G12'
- SI_NN_G2 = 'SI-NN-G2'
- SI_NN_G3 = 'SI-NN-G3'
- SI_NN_G4 = 'SI-NN-G4'
- SI_NN_G5 = 'SI-NN-G5'
- SI_NN_G6 = 'SI-NN-G6'
- SI_NN_G7 = 'SI-NN-G7'
- SI_NN_G8 = 'SI-NN-G8'
- SI_NN_G9 = 'SI-NN-G9'
- SI_NN_H1 = 'SI-NN-H1'
- SI_NN_H10 = 'SI-NN-H10'
- SI_NN_H11 = 'SI-NN-H11'
- SI_NN_H12 = 'SI-NN-H12'
- SI_NN_H2 = 'SI-NN-H2'
- SI_NN_H3 = 'SI-NN-H3'
- SI_NN_H4 = 'SI-NN-H4'
- SI_NN_H5 = 'SI-NN-H5'
- SI_NN_H6 = 'SI-NN-H6'
- SI_NN_H7 = 'SI-NN-H7'
- SI_NN_H8 = 'SI-NN-H8'
- SI_NN_H9 = 'SI-NN-H9'
- SI_TT_A1 = 'SI-TT-A1'
- SI_TT_A10 = 'SI-TT-A10'
- SI_TT_A11 = 'SI-TT-A11'
- SI_TT_A12 = 'SI-TT-A12'
- SI_TT_A2 = 'SI-TT-A2'
- SI_TT_A3 = 'SI-TT-A3'
- SI_TT_A4 = 'SI-TT-A4'
- SI_TT_A5 = 'SI-TT-A5'
- SI_TT_A6 = 'SI-TT-A6'
- SI_TT_A7 = 'SI-TT-A7'
- SI_TT_A8 = 'SI-TT-A8'
- SI_TT_A9 = 'SI-TT-A9'
- SI_TT_B1 = 'SI-TT-B1'
- SI_TT_B10 = 'SI-TT-B10'
- SI_TT_B11 = 'SI-TT-B11'
- SI_TT_B12 = 'SI-TT-B12'
- SI_TT_B2 = 'SI-TT-B2'
- SI_TT_B3 = 'SI-TT-B3'
- SI_TT_B4 = 'SI-TT-B4'
- SI_TT_B5 = 'SI-TT-B5'
- SI_TT_B6 = 'SI-TT-B6'
- SI_TT_B7 = 'SI-TT-B7'
- SI_TT_B8 = 'SI-TT-B8'
- SI_TT_B9 = 'SI-TT-B9'
- SI_TT_C1 = 'SI-TT-C1'
- SI_TT_C10 = 'SI-TT-C10'
- SI_TT_C11 = 'SI-TT-C11'
- SI_TT_C12 = 'SI-TT-C12'
- SI_TT_C2 = 'SI-TT-C2'
- SI_TT_C3 = 'SI-TT-C3'
- SI_TT_C4 = 'SI-TT-C4'
- SI_TT_C5 = 'SI-TT-C5'
- SI_TT_C6 = 'SI-TT-C6'
- SI_TT_C7 = 'SI-TT-C7'
- SI_TT_C8 = 'SI-TT-C8'
- SI_TT_C9 = 'SI-TT-C9'
- SI_TT_D1 = 'SI-TT-D1'
- SI_TT_D10 = 'SI-TT-D10'
- SI_TT_D11 = 'SI-TT-D11'
- SI_TT_D12 = 'SI-TT-D12'
- SI_TT_D2 = 'SI-TT-D2'
- SI_TT_D3 = 'SI-TT-D3'
- SI_TT_D4 = 'SI-TT-D4'
- SI_TT_D5 = 'SI-TT-D5'
- SI_TT_D6 = 'SI-TT-D6'
- SI_TT_D7 = 'SI-TT-D7'
- SI_TT_D8 = 'SI-TT-D8'
- SI_TT_D9 = 'SI-TT-D9'
- SI_TT_E1 = 'SI-TT-E1'
- SI_TT_E10 = 'SI-TT-E10'
- SI_TT_E11 = 'SI-TT-E11'
- SI_TT_E12 = 'SI-TT-E12'
- SI_TT_E2 = 'SI-TT-E2'
- SI_TT_E3 = 'SI-TT-E3'
- SI_TT_E4 = 'SI-TT-E4'
- SI_TT_E5 = 'SI-TT-E5'
- SI_TT_E6 = 'SI-TT-E6'
- SI_TT_E7 = 'SI-TT-E7'
- SI_TT_E8 = 'SI-TT-E8'
- SI_TT_E9 = 'SI-TT-E9'
- SI_TT_F1 = 'SI-TT-F1'
- SI_TT_F10 = 'SI-TT-F10'
- SI_TT_F11 = 'SI-TT-F11'
- SI_TT_F12 = 'SI-TT-F12'
- SI_TT_F2 = 'SI-TT-F2'
- SI_TT_F3 = 'SI-TT-F3'
- SI_TT_F4 = 'SI-TT-F4'
- SI_TT_F5 = 'SI-TT-F5'
- SI_TT_F6 = 'SI-TT-F6'
- SI_TT_F7 = 'SI-TT-F7'
- SI_TT_F8 = 'SI-TT-F8'
- SI_TT_F9 = 'SI-TT-F9'
- SI_TT_G1 = 'SI-TT-G1'
- SI_TT_G10 = 'SI-TT-G10'
- SI_TT_G11 = 'SI-TT-G11'
- SI_TT_G12 = 'SI-TT-G12'
- SI_TT_G2 = 'SI-TT-G2'
- SI_TT_G3 = 'SI-TT-G3'
- SI_TT_G4 = 'SI-TT-G4'
- SI_TT_G5 = 'SI-TT-G5'
- SI_TT_G6 = 'SI-TT-G6'
- SI_TT_G7 = 'SI-TT-G7'
- SI_TT_G8 = 'SI-TT-G8'
- SI_TT_G9 = 'SI-TT-G9'
- SI_TT_H1 = 'SI-TT-H1'
- SI_TT_H10 = 'SI-TT-H10'
- SI_TT_H11 = 'SI-TT-H11'
- SI_TT_H12 = 'SI-TT-H12'
- SI_TT_H2 = 'SI-TT-H2'
- SI_TT_H3 = 'SI-TT-H3'
- SI_TT_H4 = 'SI-TT-H4'
- SI_TT_H5 = 'SI-TT-H5'
- SI_TT_H6 = 'SI-TT-H6'
- SI_TT_H7 = 'SI-TT-H7'
- SI_TT_H8 = 'SI-TT-H8'
- SI_TT_H9 = 'SI-TT-H9'
- SetB_A1 = 'SetB-A1'
- SetB_A10 = 'SetB-A10'
- SetB_A11 = 'SetB-A11'
- SetB_A12 = 'SetB-A12'
- SetB_A13 = 'SetB-A13'
- SetB_A14 = 'SetB-A14'
- SetB_A15 = 'SetB-A15'
- SetB_A16 = 'SetB-A16'
- SetB_A17 = 'SetB-A17'
- SetB_A18 = 'SetB-A18'
- SetB_A19 = 'SetB-A19'
- SetB_A2 = 'SetB-A2'
- SetB_A20 = 'SetB-A20'
- SetB_A21 = 'SetB-A21'
- SetB_A22 = 'SetB-A22'
- SetB_A23 = 'SetB-A23'
- SetB_A24 = 'SetB-A24'
- SetB_A3 = 'SetB-A3'
- SetB_A4 = 'SetB-A4'
- SetB_A5 = 'SetB-A5'
- SetB_A6 = 'SetB-A6'
- SetB_A7 = 'SetB-A7'
- SetB_A8 = 'SetB-A8'
- SetB_A9 = 'SetB-A9'
- SetB_B1 = 'SetB-B1'
- SetB_B10 = 'SetB-B10'
- SetB_B11 = 'SetB-B11'
- SetB_B12 = 'SetB-B12'
- SetB_B13 = 'SetB-B13'
- SetB_B14 = 'SetB-B14'
- SetB_B15 = 'SetB-B15'
- SetB_B16 = 'SetB-B16'
- SetB_B17 = 'SetB-B17'
- SetB_B18 = 'SetB-B18'
- SetB_B19 = 'SetB-B19'
- SetB_B2 = 'SetB-B2'
- SetB_B20 = 'SetB-B20'
- SetB_B21 = 'SetB-B21'
- SetB_B22 = 'SetB-B22'
- SetB_B23 = 'SetB-B23'
- SetB_B24 = 'SetB-B24'
- SetB_B3 = 'SetB-B3'
- SetB_B4 = 'SetB-B4'
- SetB_B5 = 'SetB-B5'
- SetB_B6 = 'SetB-B6'
- SetB_B7 = 'SetB-B7'
- SetB_B8 = 'SetB-B8'
- SetB_B9 = 'SetB-B9'
- SetB_C1 = 'SetB-C1'
- SetB_C10 = 'SetB-C10'
- SetB_C11 = 'SetB-C11'
- SetB_C12 = 'SetB-C12'
- SetB_C13 = 'SetB-C13'
- SetB_C14 = 'SetB-C14'
- SetB_C15 = 'SetB-C15'
- SetB_C16 = 'SetB-C16'
- SetB_C17 = 'SetB-C17'
- SetB_C18 = 'SetB-C18'
- SetB_C19 = 'SetB-C19'
- SetB_C2 = 'SetB-C2'
- SetB_C20 = 'SetB-C20'
- SetB_C21 = 'SetB-C21'
- SetB_C22 = 'SetB-C22'
- SetB_C23 = 'SetB-C23'
- SetB_C24 = 'SetB-C24'
- SetB_C3 = 'SetB-C3'
- SetB_C4 = 'SetB-C4'
- SetB_C5 = 'SetB-C5'
- SetB_C6 = 'SetB-C6'
- SetB_C7 = 'SetB-C7'
- SetB_C8 = 'SetB-C8'
- SetB_C9 = 'SetB-C9'
- SetB_D1 = 'SetB-D1'
- SetB_D10 = 'SetB-D10'
- SetB_D11 = 'SetB-D11'
- SetB_D12 = 'SetB-D12'
- SetB_D13 = 'SetB-D13'
- SetB_D14 = 'SetB-D14'
- SetB_D15 = 'SetB-D15'
- SetB_D16 = 'SetB-D16'
- SetB_D17 = 'SetB-D17'
- SetB_D18 = 'SetB-D18'
- SetB_D19 = 'SetB-D19'
- SetB_D2 = 'SetB-D2'
- SetB_D20 = 'SetB-D20'
- SetB_D21 = 'SetB-D21'
- SetB_D22 = 'SetB-D22'
- SetB_D23 = 'SetB-D23'
- SetB_D24 = 'SetB-D24'
- SetB_D3 = 'SetB-D3'
- SetB_D4 = 'SetB-D4'
- SetB_D5 = 'SetB-D5'
- SetB_D6 = 'SetB-D6'
- SetB_D7 = 'SetB-D7'
- SetB_D8 = 'SetB-D8'
- SetB_D9 = 'SetB-D9'
- SetB_E1 = 'SetB-E1'
- SetB_E10 = 'SetB-E10'
- SetB_E11 = 'SetB-E11'
- SetB_E12 = 'SetB-E12'
- SetB_E13 = 'SetB-E13'
- SetB_E14 = 'SetB-E14'
- SetB_E15 = 'SetB-E15'
- SetB_E16 = 'SetB-E16'
- SetB_E17 = 'SetB-E17'
- SetB_E18 = 'SetB-E18'
- SetB_E19 = 'SetB-E19'
- SetB_E2 = 'SetB-E2'
- SetB_E20 = 'SetB-E20'
- SetB_E21 = 'SetB-E21'
- SetB_E22 = 'SetB-E22'
- SetB_E23 = 'SetB-E23'
- SetB_E24 = 'SetB-E24'
- SetB_E3 = 'SetB-E3'
- SetB_E4 = 'SetB-E4'
- SetB_E5 = 'SetB-E5'
- SetB_E6 = 'SetB-E6'
- SetB_E7 = 'SetB-E7'
- SetB_E8 = 'SetB-E8'
- SetB_E9 = 'SetB-E9'
- SetB_F1 = 'SetB-F1'
- SetB_F10 = 'SetB-F10'
- SetB_F11 = 'SetB-F11'
- SetB_F12 = 'SetB-F12'
- SetB_F13 = 'SetB-F13'
- SetB_F14 = 'SetB-F14'
- SetB_F15 = 'SetB-F15'
- SetB_F16 = 'SetB-F16'
- SetB_F17 = 'SetB-F17'
- SetB_F18 = 'SetB-F18'
- SetB_F19 = 'SetB-F19'
- SetB_F2 = 'SetB-F2'
- SetB_F20 = 'SetB-F20'
- SetB_F21 = 'SetB-F21'
- SetB_F22 = 'SetB-F22'
- SetB_F23 = 'SetB-F23'
- SetB_F24 = 'SetB-F24'
- SetB_F3 = 'SetB-F3'
- SetB_F4 = 'SetB-F4'
- SetB_F5 = 'SetB-F5'
- SetB_F6 = 'SetB-F6'
- SetB_F7 = 'SetB-F7'
- SetB_F8 = 'SetB-F8'
- SetB_F9 = 'SetB-F9'
- SetB_G1 = 'SetB-G1'
- SetB_G10 = 'SetB-G10'
- SetB_G11 = 'SetB-G11'
- SetB_G12 = 'SetB-G12'
- SetB_G13 = 'SetB-G13'
- SetB_G14 = 'SetB-G14'
- SetB_G15 = 'SetB-G15'
- SetB_G16 = 'SetB-G16'
- SetB_G17 = 'SetB-G17'
- SetB_G18 = 'SetB-G18'
- SetB_G19 = 'SetB-G19'
- SetB_G2 = 'SetB-G2'
- SetB_G20 = 'SetB-G20'
- SetB_G21 = 'SetB-G21'
- SetB_G22 = 'SetB-G22'
- SetB_G23 = 'SetB-G23'
- SetB_G24 = 'SetB-G24'
- SetB_G3 = 'SetB-G3'
- SetB_G4 = 'SetB-G4'
- SetB_G5 = 'SetB-G5'
- SetB_G6 = 'SetB-G6'
- SetB_G7 = 'SetB-G7'
- SetB_G8 = 'SetB-G8'
- SetB_G9 = 'SetB-G9'
- SetB_H1 = 'SetB-H1'
- SetB_H10 = 'SetB-H10'
- SetB_H11 = 'SetB-H11'
- SetB_H12 = 'SetB-H12'
- SetB_H13 = 'SetB-H13'
- SetB_H14 = 'SetB-H14'
- SetB_H15 = 'SetB-H15'
- SetB_H16 = 'SetB-H16'
- SetB_H17 = 'SetB-H17'
- SetB_H18 = 'SetB-H18'
- SetB_H19 = 'SetB-H19'
- SetB_H2 = 'SetB-H2'
- SetB_H20 = 'SetB-H20'
- SetB_H21 = 'SetB-H21'
- SetB_H22 = 'SetB-H22'
- SetB_H23 = 'SetB-H23'
- SetB_H24 = 'SetB-H24'
- SetB_H3 = 'SetB-H3'
- SetB_H4 = 'SetB-H4'
- SetB_H5 = 'SetB-H5'
- SetB_H6 = 'SetB-H6'
- SetB_H7 = 'SetB-H7'
- SetB_H8 = 'SetB-H8'
- SetB_H9 = 'SetB-H9'
- SetB_I1 = 'SetB-I1'
- SetB_I10 = 'SetB-I10'
- SetB_I11 = 'SetB-I11'
- SetB_I12 = 'SetB-I12'
- SetB_I13 = 'SetB-I13'
- SetB_I14 = 'SetB-I14'
- SetB_I15 = 'SetB-I15'
- SetB_I16 = 'SetB-I16'
- SetB_I17 = 'SetB-I17'
- SetB_I18 = 'SetB-I18'
- SetB_I19 = 'SetB-I19'
- SetB_I2 = 'SetB-I2'
- SetB_I20 = 'SetB-I20'
- SetB_I21 = 'SetB-I21'
- SetB_I22 = 'SetB-I22'
- SetB_I23 = 'SetB-I23'
- SetB_I24 = 'SetB-I24'
- SetB_I3 = 'SetB-I3'
- SetB_I4 = 'SetB-I4'
- SetB_I5 = 'SetB-I5'
- SetB_I6 = 'SetB-I6'
- SetB_I7 = 'SetB-I7'
- SetB_I8 = 'SetB-I8'
- class bkbit.models.library_generation.LibraryTechnique(value)[source]
Bases:
str
,Enum
An enumeration.
- DBiT_ATAC_seq = 'DBiT ATAC-seq'
- DBiT_RNA_seq = 'DBiT RNA-seq'
- MERFISH = 'MERFISH'
- MethylC_Seq = 'MethylC-Seq'
- SMARTSeqSC = 'SMARTSeqSC'
- Slide_seq_MERFISH = 'Slide-seq MERFISH'
- SmartSeq3 = 'SmartSeq3'
- number_10XMultiome_CellHashingSEMICOLONATAC = '10XMultiome-CellHashing;ATAC'
- number_10XMultiome_CellHashingSEMICOLONGEX = '10XMultiome-CellHashing;GEX'
- number_10XMultiome_Cell_HashingSEMICOLONBarcode = '10XMultiome-Cell Hashing;Barcode'
- number_10xATAC_V2FULL_STOP0 = '10xATAC_V2.0'
- number_10xMultiomeSEMICOLONATAC = '10xMultiome;ATAC'
- number_10xMultiomeSEMICOLONGEX = '10xMultiome;GEX'
- number_10xV3FULL_STOP1 = '10xV3.1'
- number_10xV3FULL_STOP1_CellPlexSEMICOLONBarcode = '10xV3.1_CellPlex;Barcode'
- number_10xV3FULL_STOP1_CellPlexSEMICOLONGEX = '10xV3.1_CellPlex;GEX'
- number_10xV3FULL_STOP1_HT = '10xV3.1_HT'
- number_10xV3FULL_STOP1_HT_CellPlexSEMICOLONBarcode = '10xV3.1_HT_CellPlex;Barcode'
- number_10xV3FULL_STOP1_HT_CellPlexSEMICOLONGEX = '10xV3.1_HT_CellPlex;GEX'
- scATAC_seq = 'scATAC-seq'
- snm3C_seq = 'snm3C-seq'
- snmCT_seq = 'snmCT-seq'
- whole_brain_MERFISH = 'whole brain MERFISH'
- class bkbit.models.library_generation.LinkMLMeta(root: RootModelRootType = PydanticUndefined)[source]
Bases:
RootModel
Create a new model by parsing and validating input data from keyword arguments.
Raises [ValidationError][pydantic_core.ValidationError] if the input data cannot be validated to form a valid model.
self is explicitly positional-only to allow self as a field name.
- model_config: ClassVar[ConfigDict] = {'frozen': True}
Configuration for the model, should be a dictionary conforming to [ConfigDict][pydantic.config.ConfigDict].
- root: Dict[str, Any]
- class bkbit.models.library_generation.MacromolecularMachineMixin(*, name: str | None = None)[source]
Bases:
ConfiguredBaseModel
A union of gene locus, gene product, and macromolecular complex. These are the basic units of function in a cell. They either carry out individual biological activities, or they encode molecules which do this.
Create a new model by parsing and validating input data from keyword arguments.
Raises [ValidationError][pydantic_core.ValidationError] if the input data cannot be validated to form a valid model.
self is explicitly positional-only to allow self as a field name.
- linkml_meta: ClassVar[LinkMLMeta] = LinkMLMeta(root={'class_uri': 'biolink:MacromolecularMachineMixin', 'definition_uri': 'https://w3id.org/biolink/vocab/MacromolecularMachineMixin', 'from_schema': 'https://w3id.org/biolink/bican-biolink-schema', 'mixin': True})
- model_config: ClassVar[ConfigDict] = {'arbitrary_types_allowed': True, 'extra': 'forbid', 'strict': False, 'use_enum_values': True, 'validate_assignment': True, 'validate_default': True}
Configuration for the model, should be a dictionary conforming to [ConfigDict][pydantic.config.ConfigDict].
- name: str | None
- class bkbit.models.library_generation.MaterialSample(*, id: str, iri: str | None = None, category: List[Literal['https://w3id.org/biolink/vocab/MaterialSample', 'biolink:MaterialSample']] = ['biolink:MaterialSample'], type: List[str] | None = None, name: str | None = None, description: str | None = None, has_attribute: List[str] | None = None, deprecated: bool | None = None, provided_by: List[str] | None = None, xref: List[str] | None = None, full_name: str | None = None, synonym: List[str] | None = None)[source]
Bases:
SubjectOfInvestigation
,PhysicalEntity
A sample is a limited quantity of something (e.g. an individual or set of individuals from a population, or a portion of a substance) to be used for testing, analysis, inspection, investigation, demonstration, or trial use. [SIO]
Create a new model by parsing and validating input data from keyword arguments.
Raises [ValidationError][pydantic_core.ValidationError] if the input data cannot be validated to form a valid model.
self is explicitly positional-only to allow self as a field name.
- category: List[Literal['https://w3id.org/biolink/vocab/MaterialSample', 'biolink:MaterialSample']]
- deprecated: bool | None
- description: str | None
- full_name: str | None
- has_attribute: List[str] | None
- id: str
- iri: str | None
- linkml_meta: ClassVar[LinkMLMeta] = LinkMLMeta(root={'aliases': ['biospecimen', 'sample', 'biosample', 'physical sample'], 'class_uri': 'biolink:MaterialSample', 'definition_uri': 'https://w3id.org/biolink/vocab/MaterialSample', 'exact_mappings': ['OBI:0000747', 'SIO:001050'], 'from_schema': 'https://w3id.org/biolink/bican-biolink-schema', 'id_prefixes': ['BIOSAMPLE', 'GOLD.META'], 'mixins': ['subject of investigation']})
- model_config: ClassVar[ConfigDict] = {'arbitrary_types_allowed': True, 'extra': 'forbid', 'strict': False, 'use_enum_values': True, 'validate_assignment': True, 'validate_default': True}
Configuration for the model, should be a dictionary conforming to [ConfigDict][pydantic.config.ConfigDict].
- name: str | None
- provided_by: List[str] | None
- synonym: List[str] | None
- type: List[str] | None
- xref: List[str] | None
- class bkbit.models.library_generation.NamedThing(*, id: str, iri: str | None = None, category: List[Literal['https://w3id.org/biolink/vocab/NamedThing', 'biolink:NamedThing']] = ['biolink:NamedThing'], type: List[str] | None = None, name: str | None = None, description: str | None = None, has_attribute: List[str] | None = None, deprecated: bool | None = None, provided_by: List[str] | None = None, xref: List[str] | None = None, full_name: str | None = None, synonym: List[str] | None = None)[source]
Bases:
Entity
a databased entity or concept/class
Create a new model by parsing and validating input data from keyword arguments.
Raises [ValidationError][pydantic_core.ValidationError] if the input data cannot be validated to form a valid model.
self is explicitly positional-only to allow self as a field name.
- category: List[Literal['https://w3id.org/biolink/vocab/NamedThing', 'biolink:NamedThing']]
- deprecated: bool | None
- description: str | None
- full_name: str | None
- has_attribute: List[str] | None
- id: str
- iri: str | None
- linkml_meta: ClassVar[LinkMLMeta] = LinkMLMeta(root={'class_uri': 'biolink:NamedThing', 'definition_uri': 'https://w3id.org/biolink/vocab/NamedThing', 'exact_mappings': ['BFO:0000001', 'WIKIDATA:Q35120', 'UMLSSG:OBJC', 'STY:T071', 'dcid:Thing'], 'from_schema': 'https://w3id.org/biolink/bican-biolink-schema'})
- model_config: ClassVar[ConfigDict] = {'arbitrary_types_allowed': True, 'extra': 'forbid', 'strict': False, 'use_enum_values': True, 'validate_assignment': True, 'validate_default': True}
Configuration for the model, should be a dictionary conforming to [ConfigDict][pydantic.config.ConfigDict].
- name: str | None
- provided_by: List[str] | None
- synonym: List[str] | None
- type: List[str] | None
- xref: List[str] | None
- class bkbit.models.library_generation.Occurrent[source]
Bases:
PhysicalEssenceOrOccurrent
A processual entity.
Create a new model by parsing and validating input data from keyword arguments.
Raises [ValidationError][pydantic_core.ValidationError] if the input data cannot be validated to form a valid model.
self is explicitly positional-only to allow self as a field name.
- linkml_meta: ClassVar[LinkMLMeta] = LinkMLMeta(root={'class_uri': 'biolink:Occurrent', 'definition_uri': 'https://w3id.org/biolink/vocab/Occurrent', 'exact_mappings': ['BFO:0000003'], 'from_schema': 'https://w3id.org/biolink/bican-biolink-schema', 'mixin': True})
- model_config: ClassVar[ConfigDict] = {'arbitrary_types_allowed': True, 'extra': 'forbid', 'strict': False, 'use_enum_values': True, 'validate_assignment': True, 'validate_default': True}
Configuration for the model, should be a dictionary conforming to [ConfigDict][pydantic.config.ConfigDict].
- class bkbit.models.library_generation.OntologyClass(*, id: str)[source]
Bases:
ConfiguredBaseModel
a concept or class in an ontology, vocabulary or thesaurus. Note that nodes in a biolink compatible KG can be considered both instances of biolink classes, and OWL classes in their own right. In general you should not need to use this class directly. Instead, use the appropriate biolink class. For example, for the GO concept of endocytosis (GO:0006897), use bl:BiologicalProcess as the type.
Create a new model by parsing and validating input data from keyword arguments.
Raises [ValidationError][pydantic_core.ValidationError] if the input data cannot be validated to form a valid model.
self is explicitly positional-only to allow self as a field name.
- id: str
- linkml_meta: ClassVar[LinkMLMeta] = LinkMLMeta(root={'class_uri': 'biolink:OntologyClass', 'comments': ["This is modeled as a mixin. 'ontology class' should not be the primary type of a node in the KG. Instead you should use an informative bioloink category, such as AnatomicalEntity (for Uberon classes), ChemicalSubstance (for CHEBI or CHEMBL), etc", "Note that formally this is a metaclass. Instances of this class are instances in the graph, but can be the object of 'type' edges. For example, if we had a node in the graph representing a specific brain of a specific patient (e.g brain001), this could have a category of bl:Sample, and by typed more specifically with an ontology class UBERON:nnn, which has as category bl:AnatomicalEntity"], 'definition_uri': 'https://w3id.org/biolink/vocab/OntologyClass', 'exact_mappings': ['owl:Class', 'schema:Class'], 'examples': [{'description': "the class 'brain' from the Uberon anatomy ontology", 'value': 'UBERON:0000955'}], 'from_schema': 'https://w3id.org/biolink/bican-biolink-schema', 'id_prefixes': ['MESH', 'UMLS', 'KEGG.BRITE'], 'mixin': True, 'see_also': ['https://github.com/biolink/biolink-model/issues/486']})
- model_config: ClassVar[ConfigDict] = {'arbitrary_types_allowed': True, 'extra': 'forbid', 'strict': False, 'use_enum_values': True, 'validate_assignment': True, 'validate_default': True}
Configuration for the model, should be a dictionary conforming to [ConfigDict][pydantic.config.ConfigDict].
- class bkbit.models.library_generation.OrganismTaxon(*, id: str, iri: str | None = None, category: List[Literal['https://w3id.org/biolink/vocab/OrganismTaxon', 'biolink:OrganismTaxon']] = ['biolink:OrganismTaxon'], type: List[str] | None = None, name: str | None = None, description: str | None = None, has_attribute: List[str] | None = None, deprecated: bool | None = None, provided_by: List[str] | None = None, xref: List[str] | None = None, full_name: str | None = None, synonym: List[str] | None = None, has_taxonomic_rank: str | None = None)[source]
Bases:
NamedThing
A classification of a set of organisms. Example instances: NCBITaxon:9606 (Homo sapiens), NCBITaxon:2 (Bacteria). Can also be used to represent strains or subspecies.
Create a new model by parsing and validating input data from keyword arguments.
Raises [ValidationError][pydantic_core.ValidationError] if the input data cannot be validated to form a valid model.
self is explicitly positional-only to allow self as a field name.
- category: List[Literal['https://w3id.org/biolink/vocab/OrganismTaxon', 'biolink:OrganismTaxon']]
- deprecated: bool | None
- description: str | None
- full_name: str | None
- has_attribute: List[str] | None
- has_taxonomic_rank: str | None
- id: str
- iri: str | None
- linkml_meta: ClassVar[LinkMLMeta] = LinkMLMeta(root={'aliases': ['taxon', 'taxonomic classification'], 'class_uri': 'biolink:OrganismTaxon', 'definition_uri': 'https://w3id.org/biolink/vocab/OrganismTaxon', 'exact_mappings': ['WIKIDATA:Q16521', 'STY:T001', 'bioschemas:Taxon'], 'from_schema': 'https://w3id.org/biolink/bican-biolink-schema', 'id_prefixes': ['NCBITaxon', 'MESH', 'UMLS'], 'in_subset': ['model_organism_database'], 'narrow_mappings': ['dcid:BiologicalSpecies'], 'values_from': ['NCBITaxon']})
- model_config: ClassVar[ConfigDict] = {'arbitrary_types_allowed': True, 'extra': 'forbid', 'strict': False, 'use_enum_values': True, 'validate_assignment': True, 'validate_default': True}
Configuration for the model, should be a dictionary conforming to [ConfigDict][pydantic.config.ConfigDict].
- name: str | None
- provided_by: List[str] | None
- synonym: List[str] | None
- type: List[str] | None
- xref: List[str] | None
- class bkbit.models.library_generation.PhysicalEntity(*, id: str, iri: str | None = None, category: List[Literal['https://w3id.org/biolink/vocab/PhysicalEntity', 'biolink:PhysicalEntity']] = ['biolink:PhysicalEntity'], type: List[str] | None = None, name: str | None = None, description: str | None = None, has_attribute: List[str] | None = None, deprecated: bool | None = None, provided_by: List[str] | None = None, xref: List[str] | None = None, full_name: str | None = None, synonym: List[str] | None = None)[source]
Bases:
PhysicalEssence
,NamedThing
An entity that has material reality (a.k.a. physical essence).
Create a new model by parsing and validating input data from keyword arguments.
Raises [ValidationError][pydantic_core.ValidationError] if the input data cannot be validated to form a valid model.
self is explicitly positional-only to allow self as a field name.
- category: List[Literal['https://w3id.org/biolink/vocab/PhysicalEntity', 'biolink:PhysicalEntity']]
- deprecated: bool | None
- description: str | None
- full_name: str | None
- has_attribute: List[str] | None
- id: str
- iri: str | None
- linkml_meta: ClassVar[LinkMLMeta] = LinkMLMeta(root={'class_uri': 'biolink:PhysicalEntity', 'definition_uri': 'https://w3id.org/biolink/vocab/PhysicalEntity', 'exact_mappings': ['STY:T072'], 'from_schema': 'https://w3id.org/biolink/bican-biolink-schema', 'mixins': ['physical essence'], 'narrow_mappings': ['STY:T073']})
- model_config: ClassVar[ConfigDict] = {'arbitrary_types_allowed': True, 'extra': 'forbid', 'strict': False, 'use_enum_values': True, 'validate_assignment': True, 'validate_default': True}
Configuration for the model, should be a dictionary conforming to [ConfigDict][pydantic.config.ConfigDict].
- name: str | None
- provided_by: List[str] | None
- synonym: List[str] | None
- type: List[str] | None
- xref: List[str] | None
- class bkbit.models.library_generation.PhysicalEssence[source]
Bases:
PhysicalEssenceOrOccurrent
Semantic mixin concept. Pertains to entities that have physical properties such as mass, volume, or charge.
Create a new model by parsing and validating input data from keyword arguments.
Raises [ValidationError][pydantic_core.ValidationError] if the input data cannot be validated to form a valid model.
self is explicitly positional-only to allow self as a field name.
- linkml_meta: ClassVar[LinkMLMeta] = LinkMLMeta(root={'class_uri': 'biolink:PhysicalEssence', 'definition_uri': 'https://w3id.org/biolink/vocab/PhysicalEssence', 'from_schema': 'https://w3id.org/biolink/bican-biolink-schema', 'mixin': True})
- model_config: ClassVar[ConfigDict] = {'arbitrary_types_allowed': True, 'extra': 'forbid', 'strict': False, 'use_enum_values': True, 'validate_assignment': True, 'validate_default': True}
Configuration for the model, should be a dictionary conforming to [ConfigDict][pydantic.config.ConfigDict].
- class bkbit.models.library_generation.PhysicalEssenceOrOccurrent[source]
Bases:
ConfiguredBaseModel
Either a physical or processual entity.
Create a new model by parsing and validating input data from keyword arguments.
Raises [ValidationError][pydantic_core.ValidationError] if the input data cannot be validated to form a valid model.
self is explicitly positional-only to allow self as a field name.
- linkml_meta: ClassVar[LinkMLMeta] = LinkMLMeta(root={'class_uri': 'biolink:PhysicalEssenceOrOccurrent', 'definition_uri': 'https://w3id.org/biolink/vocab/PhysicalEssenceOrOccurrent', 'from_schema': 'https://w3id.org/biolink/bican-biolink-schema', 'mixin': True})
- model_config: ClassVar[ConfigDict] = {'arbitrary_types_allowed': True, 'extra': 'forbid', 'strict': False, 'use_enum_values': True, 'validate_assignment': True, 'validate_default': True}
Configuration for the model, should be a dictionary conforming to [ConfigDict][pydantic.config.ConfigDict].
- class bkbit.models.library_generation.Procedure(*, id: str, iri: str | None = None, category: List[Literal['https://w3id.org/biolink/vocab/Procedure', 'biolink:Procedure']] = ['biolink:Procedure'], type: List[str] | None = None, name: str | None = None, description: str | None = None, has_attribute: List[str] | None = None, deprecated: bool | None = None, provided_by: List[str] | None = None, xref: List[str] | None = None, full_name: str | None = None, synonym: List[str] | None = None)[source]
Bases:
ActivityAndBehavior
,NamedThing
A series of actions conducted in a certain order or manner
Create a new model by parsing and validating input data from keyword arguments.
Raises [ValidationError][pydantic_core.ValidationError] if the input data cannot be validated to form a valid model.
self is explicitly positional-only to allow self as a field name.
- category: List[Literal['https://w3id.org/biolink/vocab/Procedure', 'biolink:Procedure']]
- deprecated: bool | None
- description: str | None
- full_name: str | None
- has_attribute: List[str] | None
- id: str
- iri: str | None
- linkml_meta: ClassVar[LinkMLMeta] = LinkMLMeta(root={'class_uri': 'biolink:Procedure', 'definition_uri': 'https://w3id.org/biolink/vocab/Procedure', 'exact_mappings': ['UMLSSG:PROC', 'dcid:MedicalProcedure'], 'from_schema': 'https://w3id.org/biolink/bican-biolink-schema', 'id_prefixes': ['CPT'], 'mixins': ['activity and behavior'], 'narrow_mappings': ['STY:T059', 'STY:T060', 'STY:T061', 'STY:T063']})
- model_config: ClassVar[ConfigDict] = {'arbitrary_types_allowed': True, 'extra': 'forbid', 'strict': False, 'use_enum_values': True, 'validate_assignment': True, 'validate_default': True}
Configuration for the model, should be a dictionary conforming to [ConfigDict][pydantic.config.ConfigDict].
- name: str | None
- provided_by: List[str] | None
- synonym: List[str] | None
- type: List[str] | None
- xref: List[str] | None
- class bkbit.models.library_generation.ProvActivity(*, used: str | None = None)[source]
Bases:
ConfiguredBaseModel
An activity is something that occurs over a period of time and acts upon or with entities; it may include consuming, processing, transforming, modifying, relocating, using, or generating entities.
Create a new model by parsing and validating input data from keyword arguments.
Raises [ValidationError][pydantic_core.ValidationError] if the input data cannot be validated to form a valid model.
self is explicitly positional-only to allow self as a field name.
- linkml_meta: ClassVar[LinkMLMeta] = LinkMLMeta(root={'class_uri': 'prov:Activity', 'from_schema': 'https://identifiers.org/brain-bican/genome-prov-schema', 'mixin': True})
- model_config: ClassVar[ConfigDict] = {'arbitrary_types_allowed': True, 'extra': 'forbid', 'strict': False, 'use_enum_values': True, 'validate_assignment': True, 'validate_default': True}
Configuration for the model, should be a dictionary conforming to [ConfigDict][pydantic.config.ConfigDict].
- used: str | None
- class bkbit.models.library_generation.ProvEntity(*, was_derived_from: str | None = None, was_generated_by: str | None = None)[source]
Bases:
ConfiguredBaseModel
An entity is a physical, digital, conceptual, or other kind of thing with some fixed aspects; entities may be real or imaginary.
Create a new model by parsing and validating input data from keyword arguments.
Raises [ValidationError][pydantic_core.ValidationError] if the input data cannot be validated to form a valid model.
self is explicitly positional-only to allow self as a field name.
- linkml_meta: ClassVar[LinkMLMeta] = LinkMLMeta(root={'class_uri': 'prov:Entity', 'from_schema': 'https://identifiers.org/brain-bican/genome-prov-schema', 'mixin': True})
- model_config: ClassVar[ConfigDict] = {'arbitrary_types_allowed': True, 'extra': 'forbid', 'strict': False, 'use_enum_values': True, 'validate_assignment': True, 'validate_default': True}
Configuration for the model, should be a dictionary conforming to [ConfigDict][pydantic.config.ConfigDict].
- was_derived_from: str | None
- was_generated_by: str | None
- class bkbit.models.library_generation.QuantityValue(*, has_unit: str | None = None, has_numeric_value: float | None = None)[source]
Bases:
Annotation
A value of an attribute that is quantitative and measurable, expressed as a combination of a unit and a numeric value
Create a new model by parsing and validating input data from keyword arguments.
Raises [ValidationError][pydantic_core.ValidationError] if the input data cannot be validated to form a valid model.
self is explicitly positional-only to allow self as a field name.
- has_numeric_value: float | None
- has_unit: str | None
- linkml_meta: ClassVar[LinkMLMeta] = LinkMLMeta(root={'class_uri': 'biolink:QuantityValue', 'definition_uri': 'https://w3id.org/biolink/vocab/QuantityValue', 'from_schema': 'https://w3id.org/biolink/bican-biolink-schema'})
- model_config: ClassVar[ConfigDict] = {'arbitrary_types_allowed': True, 'extra': 'forbid', 'strict': False, 'use_enum_values': True, 'validate_assignment': True, 'validate_default': True}
Configuration for the model, should be a dictionary conforming to [ConfigDict][pydantic.config.ConfigDict].
- class bkbit.models.library_generation.Sex(value)[source]
Bases:
str
,Enum
An enumeration.
- number_1 = '1'
- number_2 = '2'
- number_7 = '7'
- number_8 = '8'
- number_9 = '9'
- class bkbit.models.library_generation.SubjectOfInvestigation[source]
Bases:
ConfiguredBaseModel
An entity that has the role of being studied in an investigation, study, or experiment
Create a new model by parsing and validating input data from keyword arguments.
Raises [ValidationError][pydantic_core.ValidationError] if the input data cannot be validated to form a valid model.
self is explicitly positional-only to allow self as a field name.
- linkml_meta: ClassVar[LinkMLMeta] = LinkMLMeta(root={'class_uri': 'biolink:SubjectOfInvestigation', 'definition_uri': 'https://w3id.org/biolink/vocab/SubjectOfInvestigation', 'from_schema': 'https://w3id.org/biolink/bican-biolink-schema', 'mixin': True})
- model_config: ClassVar[ConfigDict] = {'arbitrary_types_allowed': True, 'extra': 'forbid', 'strict': False, 'use_enum_values': True, 'validate_assignment': True, 'validate_default': True}
Configuration for the model, should be a dictionary conforming to [ConfigDict][pydantic.config.ConfigDict].
- class bkbit.models.library_generation.TaxonomicRank(*, id: str)[source]
Bases:
OntologyClass
A descriptor for the rank within a taxonomic classification. Example instance: TAXRANK:0000017 (kingdom)
Create a new model by parsing and validating input data from keyword arguments.
Raises [ValidationError][pydantic_core.ValidationError] if the input data cannot be validated to form a valid model.
self is explicitly positional-only to allow self as a field name.
- id: str
- linkml_meta: ClassVar[LinkMLMeta] = LinkMLMeta(root={'class_uri': 'biolink:TaxonomicRank', 'definition_uri': 'https://w3id.org/biolink/vocab/TaxonomicRank', 'from_schema': 'https://w3id.org/biolink/bican-biolink-schema', 'id_prefixes': ['TAXRANK'], 'mappings': ['WIKIDATA:Q427626']})
- model_config: ClassVar[ConfigDict] = {'arbitrary_types_allowed': True, 'extra': 'forbid', 'strict': False, 'use_enum_values': True, 'validate_assignment': True, 'validate_default': True}
Configuration for the model, should be a dictionary conforming to [ConfigDict][pydantic.config.ConfigDict].
- class bkbit.models.library_generation.ThingWithTaxon(*, in_taxon: List[str] | None = None, in_taxon_label: str | None = None)[source]
Bases:
ConfiguredBaseModel
A mixin that can be used on any entity that can be taxonomically classified. This includes individual organisms; genes, their products and other molecular entities; body parts; biological processes
Create a new model by parsing and validating input data from keyword arguments.
Raises [ValidationError][pydantic_core.ValidationError] if the input data cannot be validated to form a valid model.
self is explicitly positional-only to allow self as a field name.
- in_taxon: List[str] | None
- in_taxon_label: str | None
- linkml_meta: ClassVar[LinkMLMeta] = LinkMLMeta(root={'class_uri': 'biolink:ThingWithTaxon', 'definition_uri': 'https://w3id.org/biolink/vocab/ThingWithTaxon', 'from_schema': 'https://w3id.org/biolink/bican-biolink-schema', 'mixin': True})
- model_config: ClassVar[ConfigDict] = {'arbitrary_types_allowed': True, 'extra': 'forbid', 'strict': False, 'use_enum_values': True, 'validate_assignment': True, 'validate_default': True}
Configuration for the model, should be a dictionary conforming to [ConfigDict][pydantic.config.ConfigDict].
- class bkbit.models.library_generation.TissueDissection(*, id: str, iri: str | None = None, category: List[Literal['https://identifiers.org/brain-bican/vocab/TissueDissection', 'bican:TissueDissection']] = ['bican:TissueDissection'], type: List[str] | None = None, name: str | None = None, description: str | None = None, has_attribute: List[str] | None = None, deprecated: bool | None = None, provided_by: List[str] | None = None, xref: List[str] | None = None, full_name: str | None = None, synonym: List[str] | None = None, used: str | None = None, was_guided_by: str | None = None)[source]
Bases:
ProvActivity
,Procedure
The process of dissecting a tissue sample from a brain slab guided by a dissection region of interest (ROI) delineation.
Create a new model by parsing and validating input data from keyword arguments.
Raises [ValidationError][pydantic_core.ValidationError] if the input data cannot be validated to form a valid model.
self is explicitly positional-only to allow self as a field name.
- category: List[Literal['https://identifiers.org/brain-bican/vocab/TissueDissection', 'bican:TissueDissection']]
- deprecated: bool | None
- description: str | None
- full_name: str | None
- has_attribute: List[str] | None
- id: str
- iri: str | None
- linkml_meta: ClassVar[LinkMLMeta] = LinkMLMeta(root={'from_schema': 'https://identifiers.org/brain-bican/library-generation-schema', 'in_subset': ['bican', 'library_generation'], 'mixins': ['ProvActivity'], 'slot_usage': {'category': {'name': 'category', 'pattern': '^bican:[A-Z][A-Za-z]+$'}, 'used': {'description': 'The brain slab from which the tissue sample was dissected from.', 'name': 'used', 'range': 'BrainSlab'}}})
- model_config: ClassVar[ConfigDict] = {'arbitrary_types_allowed': True, 'extra': 'forbid', 'strict': False, 'use_enum_values': True, 'validate_assignment': True, 'validate_default': True}
Configuration for the model, should be a dictionary conforming to [ConfigDict][pydantic.config.ConfigDict].
- name: str | None
- provided_by: List[str] | None
- synonym: List[str] | None
- type: List[str] | None
- used: str | None
- was_guided_by: str | None
- xref: List[str] | None
- class bkbit.models.library_generation.TissueSample(*, id: str, iri: str | None = None, category: List[Literal['https://identifiers.org/brain-bican/vocab/TissueSample', 'bican:TissueSample']] = ['bican:TissueSample'], type: List[str] | None = None, name: str | None = None, description: str | None = None, has_attribute: List[str] | None = None, deprecated: bool | None = None, provided_by: List[str] | None = None, xref: List[str] | None = None, full_name: str | None = None, synonym: List[str] | None = None, was_derived_from: str | None = None, was_generated_by: str | None = None, dissection_was_guided_by: str | None = None, tissue_sample_structure: List[str] | None = None)[source]
Bases:
ProvEntity
,MaterialSample
The final intact piece of tissue before cell or nuclei prep. This piece of tissue will be used in dissociation and has an region of interest polygon (ROI) associated with it.
Create a new model by parsing and validating input data from keyword arguments.
Raises [ValidationError][pydantic_core.ValidationError] if the input data cannot be validated to form a valid model.
self is explicitly positional-only to allow self as a field name.
- category: List[Literal['https://identifiers.org/brain-bican/vocab/TissueSample', 'bican:TissueSample']]
- deprecated: bool | None
- description: str | None
- dissection_was_guided_by: str | None
- full_name: str | None
- has_attribute: List[str] | None
- id: str
- iri: str | None
- linkml_meta: ClassVar[LinkMLMeta] = LinkMLMeta(root={'exact_mappings': ['NIMP:Tissue'], 'from_schema': 'https://identifiers.org/brain-bican/library-generation-schema', 'in_subset': ['bican', 'library_generation'], 'mixins': ['ProvEntity'], 'slot_usage': {'category': {'name': 'category', 'pattern': '^bican:[A-Z][A-Za-z]+$'}, 'name': {'description': 'Identifier name for final intact piece of tissue before cell or nuclei prep. This piece of tissue will be used in dissociation and has an ROI associated with it.', 'exact_mappings': ['NIMP:PD-LJCRCC35'], 'local_names': {'NIMP': {'local_name_source': 'NIMP', 'local_name_value': 'tissue_sample_local_name'}}, 'name': 'name', 'slot_uri': 'bican:2e4ca2fc-2d77-4d19-af45-d0fb7bbc2269'}, 'was_derived_from': {'description': 'The donor or brain slab from which the tissue sample was derived from.', 'exact_mappings': ['NIMP:has_parent'], 'name': 'was_derived_from', 'range': 'Donor'}, 'was_generated_by': {'description': 'The dissection process from which the tissue sample was generated by.', 'name': 'was_generated_by', 'range': 'TissueDissection'}}})
- model_config: ClassVar[ConfigDict] = {'arbitrary_types_allowed': True, 'extra': 'forbid', 'strict': False, 'use_enum_values': True, 'validate_assignment': True, 'validate_default': True}
Configuration for the model, should be a dictionary conforming to [ConfigDict][pydantic.config.ConfigDict].
- name: str | None
- provided_by: List[str] | None
- synonym: List[str] | None
- tissue_sample_structure: List[str] | None
- type: List[str] | None
- was_derived_from: str | None
- was_generated_by: str | None
- xref: List[str] | None